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CHAPTER 1. GENERAL INTRODUCTION 

General Overview 

Electron-transfer reactions are essential for life. They provide a way to harvest the 

energy of the Sun and present the energy to living beings by transforming the chemical 

energy into heat or work. Electron-transfer reactions, though are the simplest of chemical 

reactions since they do not involve making or breaking of bonds, are still poorly understood. 

How metalloproteins, as electron carriers in different biological processes, recognize, 

interact, and react with each other began to emerge in recent years. A pair of proteins can 

form multiple complexes in solution and orientation that is optimal for recognition need not 

be optimal for electron transfer.5-8 Though the number of structures of electron-transfer 

proteins being solved in last two decades have increased significantly, the structures of 

protein complexes are still scarce.^' 

We use theory and experiments to develop a physical picture of all the factors that are 

responsible for recognition, interaction, and reactivity of electron-transfer proteins. The heme 

protein cytochrome and the blue-copper protein plastocyanin,!^"!^ designated cyt 

and pc, are well suited for kinetic and mechanistic studies since their three-dimensional 

structures are known. The structure of the binding complex, in which proteins associate, and 

reactive complex, in which proteins react, are not known. This laid the ground work for our 

research. 
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We study the effects of ionic strength, viscosity, site-directed mutations, reaction free 

energy, and pH on the association and reactivity of cytochrome c and plastocyanin protein 

complex. This thesis represents what we have discovered about the interactions and reactivity 

of these two electron-transfer proteins. 

Dissertation Organization 

This dissertation consists of systematic studies to understand the factors influencing 

association and reactivity of cytochrome c and plastocyanin. Chapter 2 explores the effects of 

site-directed mutations and viscosity on the rate-limiting rearrangement and identifies the 

reactive configuration of the cytochrome c/plastocyanin complex. The reactive configuration 

is in between the acidic and the hydrophobic patch of plastocyanin. Chapter 3 surveys the 

reactivity of the zinc cytochrome c cation radical. The reorganization energy and the rate 

constant for electron self-exchange of the cation radical show that the iron and zinc forms of 

the same protein, cytochrome c, differ markedly in their properties as redox agents. In 

chapter 4 we present the extended proton-linkage model to treat the protein association. We 

use interplay of experiments and calculations to obtain the protonation constants for amino 

acid side chains in plastocyanin and cytochrome c. Chapter 5 deals with the effects of pH on 

protein rearrangement. The rearrangement is independent of pH giving us information about 

the protonation states of amino acid residues in the complex of plastocyanin and 

cytochrome c. 
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Chapters 2-5 represent papers that either have been or will be published in peer 

refereed journals. The dissertation ends with Chapter 6, which is a presentation of the overall 

conclusions. 
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CHAPTER 2. EFFECTS OF MUTATIONS IN PLASTOCYANIN ON THE 

KINETICS OF THE PROTEIN REARRANGEMENT GATING THE 

ELECTRON-TRANSFER REACTION WITH ZINC CYTOCHROME C. ANALYSIS 

OF THE REARRANGEMENT PATHWAY 

A paper published in and reprinted from 

Biochemistry 1996,55,16465-16474 

Milan M. Cmogorac, Chengyu Shen, Simon Young, Oqan Hansson, and Nenad M. Kostic 

All kinetic experiments, interpretation of results, and molecular modeling were done by the 

primary author except for kinetic experiments with changing viscosity. 

Abstract 

We study, by flash kinetic spectrophotometry on the microsecond time scale, the 

effects of ionic strength and viscosity on the kinetics of oxidative quenching of the triplet 

state of zinc cytochrome c, ^Zncyt, by the wild-type form and the following nine mutants of 

cupriplastocyanin: Leul2Glu, Leul2Asn, Phe35Tyr, Gln88Glu, Tyr83Phe, TyrSSHis, 

Asp42Asn, Glu43Asn, and the double mutant Glu59Lys/GIu60Gln. The unimolecular rate 

constants for the quenching reactions within the persistent diprotein complex, which 

predominates at low ionic strength, and within the transient diprotein complex, which is 

involved at higher ionic strength, are equal irrespective of the mutation. Evidently, the two 

complexes are the same, fo both reactions the rate-limiting step is rearrangement of the 

diprotein complex from a configuration optimal for docking to the one optimal for the 

subsequent electron-transfer step, which is fast. We investigate the effects of plastocyanin 

mutations on this rearrangement, which gates the overall electron-transfer reaction. 
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Conversion of the carboxylate anions into amide groups in the lower acidic cluster (residues 

nos. 42 and 43), replacement of Tyr 83 with other aromatic residues, and mutations in the 

hydrophobic patch in plastocyanin do not significantly affect the rearrangement. Conversion 

of a pair of carboxylate anions into a cationic and a neutral residue in the upper acidic cluster 

(residues nos. 59 and 60) impedes the rearrangement. Creation of an anion at the position no. 

88, between the upper acidic cluster and the hydrophobic patch, facilitates the rearrangement. 

All of these kinetic effects and none^ects of mutations consistently indicate that in the 

protein rearrangement the basic patch of zinc cytochrome c may move from a position 

between the two acidic clusters to a position at or near the upper acidic cluster. The rate 

constant for the rearrangement smoothly decreases as the solution viscosity increases, 

irrespective of the mutation. Fittings of this dependence to the modified Kramers's equation 

and to an empirical equation show that zinc cytochrome c follows the same trajectory on the 

surfaces of all the plastocyanin mutants, but that the obstacles along the way vary as 

mutations alter the electrostatic potential. 

Introduction 

Electron-transfer reactions of metalloproteins are involved in photosynthesis, 

respiration, and many other biological processes. Chemical research into molecular 

mechanisms of these important reactions is best done with well-characterized proteins and 

their pairs (Hoffman et al., 1991; Mauk, 1991; Pelletier & Kraut, 1992; Chen et al., 1992, 

1994; McLendon, 1991a,b; McLendon & Hake, 1992; Zhou & Hoffman, 1994; Zhou et al., 

1995; Therien et al., 1991; Winkler & Gray, 1992; Kostic, 1991). The heme protein 

cytochrome c ̂ ettigrew & Moore, 1987; Moore & Pettigiew, 1990; Scott & Mauk, 1996) 
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and the blue copper protein plastocyanin (Redinbo et al., 1994; Gross, 1993; Sykes, 1991a,b), 

designated cyt and pc,^ are well suited to quantitative studies because their three-dimensional 

structures in both oxidized and reduced states and in both crystal and solution are precisely 

known. 

A pair of metalloproteins can associate in multiple configurations (Wendoloski et al., 

1987; Northrup et al., 1988; Rodgers et al., 1988; Burch et al., 1990; Wallin et al., 1991; 

Roberts et al., 1991; Nocek et al., 1991; Willie et al., 1992; McLendon et al., 1993; Harris et 

al., 1993; Mauket al., 1994; Zhou & Hoffman, 1994). A configuration that optimizes 

binding need not optimize the subsequent electron-transfer reaction. The rate of this reaction 

within the complex may be controlled by the rate of some structural change; in this case the 

redox reaction is said to be gated (Hoffman & Ramer, 1987,1988; Brunschwig & Sutin, 

1989; Hoffman et al., 1990; Nocek et al., 1991; Feitelson & McLendon, 1991; Walker & 

Tollin, 1992; Sullivan et al., 1992). The phenomenon of gating is conmion with proteins and 

is found in various biochemical processes. 

In the chemical equations below the slash mark represents protein association, i.e., the 

diprotein complex. The Roman numerals are the oxidation states of iron and copper. In zinc 

cytochrome c the oxidation state of zinc is always n, and an electron is given and accepted by 

the porphyrin ring. 

I Abbreviations: cyt, cytochrome c; cyt(III), femcytochrome c; cyt(II), 
ferrocytohrome c; pc, plastocyanin; pc(II), cupriplastocyanin; pc(I), cuproplastocyanin; Zncyt, 
zinc cytochrome c; ^^cyt, triplet (excited) state of zinc cytochrome c; Zncyt^, cation radical 
of zinc cytochrome c. 
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Because zinc cytochrome c and the wild-type cupriplastocyanin bear respective net 

charges of +6 and -8 at pH 7,0, and because they contain oppositely-charged surface patches, 

these two proteins associate in solution at low ionic strength. Much evidence shows that in 

the complexes cyt/pc the basic (positive) patch around the exposed heme edge abuts the 

broad acidic (negative) patch in plastocyanin (King et al., 1985; Bagby et al., 1990; Roberts 

et al., 1991; Zhou et al., 1992). 

Studies in our laboratories and by others of the unimoiecular reaction in eq 1 (Peerey 

& Kostic, 1989; Peerey et al., 1991; Meyer et al., 1993) and of the bimolecular reaction in eq 

2 (Modi et al, 1992a) showed that ferrocytochrome c reduces cupriplastocyanin from the 

acidic patch, but not from the initial binding site within this large patch. Similar conclusions 

were reached in studies of reactions analogous to those in eqs 1 and 2, but involving 

ferrocytochrome/instead of ferrocytochrome c (Qin & Kostic, 1992,1993; Modi et al., 

1992b). 

Kinetic studies of thermal reactions, which involve the proteins in their ground 

electronic states, are relatively complicated. The reaction in eq 1 has to be initiated by 

external reduction of the complex cyt(IlI)/pc(II), and the reaction in eq 2 involves both 

protein association and subsequent electron transfer. Replacement of iron(II) with zinc(II) in 

the heme does not significantly perturb the surface of cytochrome c and its interactions with 

other proteins (Ye et al., 1996; Angiolillo & Vanderkooi, 1995; Anni et al., 1995). Use of 

zinc cytochrome c in the studies of photoinduced reactions, those in eqs 3-6, obviates the 

need for external reducing agents and permits detailed studies of the most interesting step in 

the reactions—electron transfer within the diprotein complex (Zhou & Kostic, 1991a,b, 
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1992a,b,c, 1993a,b; Qin & Kostic, 1994,1996; Kostic, 1996; Ivkovic-Jensen & Kostic, 

1996). The reactions in eqs 3 and 5, in which the triplet state of the porphyrin is the electron 

donor, are termed forward reactions. Those in eqs 4 and 6, in which the cation radical of the 

porphyrin is the electron acceptor, are termed back reactions. The thermal reactions in eqs 1 

and 2 have the driving force of only ca. 0.10 eV and are true redox reactions; the rate-limiting 

step in them is electron transfer. Raising the driving force assists the electron transfer but 

does not affect the structural dynamics of the proteins. The photoinduced forward reactions 

in eqs 3 and 5 have die driving force of ca. 1.2 eV; in them the protein rearrangement is the 

cyt(n)/pc(II) • cyt(III)/pc(I) (1) 

cyt(II) + pc(II) • cytCni) + pc(I) (2) 

^Zncyt/pcQI) • Zncyt+/pc(I) (3) 

Zncyt+/pc(I) • Zncyt/pc(II) (4) 

3Zncyt + pc(II) • Zncyt+ + pc(I) (5) 

Zncyt+ + pc(I) • Zncyt + pc(II) (6) 

rate-limiting step, the one actually observed in kinetic experiments. In conclusion, the 

reactions in eqs 3 and 5 are gated. 

BCinetic studies (Zhou & Kostic, 1992a, 1993b; Qin & Kostic, 1994; Ivkovic-Jensen & 

Kostic, 1996) began to reveal the interplay between the structural rearrangement and the 

electron transfer. The gating process seems to be configurational fluctuation of the diprotein 

complex, during which the two proteins remain docked in the same general orientation but 

slide on each other's surface or wiggle with respect to each other. A theoretical analysis by an 

established method (Onuchic et al., 1992) of electron-transfer paths between the heme and 

blue copper sites in various configurations of the cyt(II)/pc(II) complex conflnned the 
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experimental findings by showing that the configuration that optimizes the surface 

interactions does not optimize the heme-copper electronic coupling (Ulimann & Kostic, 

1995). Motions of the cytochrome c molecule, whose basic patch explores the area within or 

near the broad acidic patch in plastocyanin, enhance this electronic coupling. In this way 

configurational fluctuation improves the intrinsic electron-transfer reactivity. Analysis of 

enthalpy of activation for the reaction in eq 3 in terms of solvation effects (Ivkovic-

Jensen & Kostic, 1996) answered some but not nearly all the questions concerning the 

dynamic process of gating. All the previous studies of the reactions in eqs 3-6 have been 

done with wild-type plastocyanin. Now we report a systematic comparison of the wild-type 

form and nine mutants of plastocyanin in the reaction in eq 3 at different ionic strengths and 

viscosities. Analysis of kinetic results reveals a likely trajectory for the cytochrome c motion 

on the plastocyanin surface. 

Materials and Methods 

Chemicals. Distilled water was demineralized to a resistivity greater than 17 

M£2*cm. Chromatography resins and gels were purhcased from Sigma Chemical Co. and 

Pharmaica. Nitrogen, HF, and ultrapure argon were purchased from Air Products Co. All 

other chemicals were purchased from Fisher Chemical Co. 

Buffers. All buffers were made fresh from the solid salts NaH2P04-H20 and 

Na2HP04-7 H2O and had ionic strength (ji) of 2.5 or 10 mM and pH of 7.00 ± 0.05 at 293 K. 

Ionic strength was raised from 10 to 100 mM by addition of NaCl. fo all of these 

preparations we took into consideration dependence of the pKa of H2P04~ on ionic strength. 
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A computer program for calculating buffer compositions is given in the Supporting 

Information. 

Temperature and Viscosity. Temperature was kept at 20.0 ± 0.2 °C with a 30-L 

circulating bath Forma Scientific CH/P 2067. Viscosity was adjusted by adding glycerol to 

the buffered solution, up to the concentration of 80% w/w. 

Zinc Cytochrome c. Horse-heart cytochrome c was purchased from Sigma Chemical 

Co. The iron-free (so-called free-base) form was made, purified, and reconstituted with 

zincOI) by a modification (Ye et al., 1996) of the original procedure (Vanderkooi & 

Ericihska, 1975; Vanderkooi et al., 1976). The product, zinc cytochrome c, was handled at 4 

°C, in the dark. Two of the criteria of purity were the absorbance ratios A423/A549 > 15.4 

and A549/A585 < 2.0. The absorptivity is £423 = 2.43 x 10^ M-^cm-^ (Vanderkooi et al., 

1976). 

Plastocyanin. Recombinant wild-type protein and nine mutants were prepared by the 

previously published method for overexpression in E. coli (Nordling et al., 1990; Sigfndson 

et al., 1995,1996), with the expression vector pUGlOltr (Nordling et al., 1991). The 

polymerase chain reaction and its modiHcations were reported before (Landt et al., 1990; 

Nordling et al., 1991). The protein was chromatographically purified first with a DE32 

column and then with a 26/10 Q Sephasose high-performance FPLC column by Pharmacia. 

The blue fraction was concentrated by dialysis against dry polyethyleneglycol (PEG 2000) 

and passed through a gel-filtration column Sephacryl S-100 HR. The amount of holo-

plastocyanin was determined spectrophotometrically, under oxidizing conditions, on the basis 

of the absorptivity 8597 = 4900 M-^cm-l (Katoh et al., 1962). 
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Only the fractions of the highest purity were used in tliis study. Despite the most 

careful handling, the mutants Leul2Glu, Leul2Asn, and Tyr83His irreversibly lost a fraction 

of the copper(II) ions. Solutions in a 100 mM Tris buffer were made 100 and 150 ̂ iM in 

these mutants, 100 and 200 |iM in CUSO4, and 150 mM in NaCl. Incubation overnight and 

repeated chromatography, as described above, temporarily lowered the absorbance quotient 

A280/A597 from 1.8-2.0 to 1.5-1.6; the quotient increased later. Therefore, the presence of 

some of apoplastocyanin in these three mutants had to be tolerated. The absorbance ratios of 

the other six mutants were 1.4 or less. 

Flash Kinetic Spectrophotometry. So-called laser flash photolysis at the resolution 

of one point per |is was done with a standard apparatus (Zhou & Kostic, 1991a,b, 1992b, 

1993a,b). The triplet state ^Zncyt was created by 0.4-|iS pulses of light from a Phase-R (now 

Luminex) DLl 100 laser containing the dye Rhodamine 590. The concentration of zinc 

cytochrome c was always 10 |iM. Appearance and disappearance of ^Zncyt and Zncyr*" were 

monitored at 460 and 675 nm, respectively. 

Concentration of the triplet state depended on the intensity of the laser pulse and was 

ca. 1.0 |iM, much lower than the cupriplastocyanin concentration, which was adjusted to 2.5, 

5.0,7.5,10,15,20, 25,30,40, and 50 jiM. BCinetic conditions for the pseudo-first order were 

thus achieved. The protein solutions, prepared with deaerated buffers, were thoroughly 

deaerated further in the stream of wet argon, without frothing, for 10 min after each addition 

of plastocyanin. At each set of conditions (cupriplastocyanin concentration, ionic strength, 

and viscosity) multiple traces were recorded; six at the ionic strength of 100 mM and ten at 
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the ionic strengths of 10 and 2.5 mM. The change of absorbance with time was analyzed 

with the software SigmaPIot vl.02, from Jandel Scientific, Inc. 

Kinetic Effects of Viscosity. Because we are interested in the effects of solution 

viscosity on the unimolecular component of quenching, the reaction in eq 3, we did these 

experiments in the sodium phophate buffer at the low ionic strength of 2.5 mM and with the 

high cupriplastocyanin concentration of 50 |iM. The relative viscosity ("h/tio) of the buffered 

solution was adjusted with glycerol (CRC Handbook). These experiments with the wild-type 

form and mutants of plastocyanin were done like the previous experiments with the wild-type 

form only (Zhou &. Kostic, 1993b). Given tIq = 1.002 cp for water at 25 °C and the fact that 

the buffered solutions were dilute, the relative viscosity is practically equal to the absolute 

viscosity (TI). 

Fittings of Data. Least-squares averaging, with SigmaPIot vl.02, of the results from 

separate fittings of kinetic traces obtained by successive flashes gave better results that 

fittings of averaged traces. The former method lessens the undue influence of so-called 

outliers on the average result. The correlation coefficient of the rate constant was greater 

than 0.990. The error margins for all results include two standard deviations and correspond 

to the confidence limit greater than 95%; they are rounded to one significant figure, for 

clarity. 

Molecular Modeling and Graphics. Structures of cytochrome c (Takano & 

Dickerson, 1981) and plastocyanin (Guss & Freeman, 1983) were taken from the 

crystallographic studies. The three configurations of the diprotein complex were those 

designated maximum-overlap (max ov); maximum-overlap, rotated (max ov rot); and 
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northern equatorial (n/eq) in the original study (Roberts et al., 1991) and afterwards (UUmann 

& Kostic, 1995). For the sake of consistency, we retain these designations and abbreviations. 

The program package QUANTA 4.0 was used on a SiliconGraphics workstation IRIS 4D. 

Protein structures were drawn with the program MolScript vl.3 (Kraulis, 1991). 

Results 

Natural Decay of the Triplet State, ^Zncyt. The rate constant for this 

monoexponential process is 120 ± 10,100 ± 10, and 80 ± 10 s*^ at the ionic strengths of 2.5, 

10, and 100 mM, respectively. See Supporting Information, Figure SI. When the buffer at 

the ionic strength of 2.5 mM is made 80% w/w in glycerol, the rate constant decreases to 75 ± 

10 s"l. When the rate constant ceased to decrease during the passing of argon, the sample 

solution was considered deaerated. 

Quenching of ^Zncyt by Cupriplastocyanin. For a typical experiment showing 

this quenching, see Supporting Information, Figure S2. The mechanism is shown in Scheme 

1. The subscripts in the symbols for the intracomplex rate constants itp (for the unimolecular 

reaction) and kf (for the bimolecular reaction) are reminders that both of these are so-called 

forward reactions, which are defined above. The two subscripts are not identical because the 

persistent complex, which exists at low ionic strength, and the transient complex, which is 

involved at higher ionic strength, are not necessarily identical. We retain these symbols from 

our previous publications, for the sake of consistency. 

At the ionic strength of 100 mM the overall quenching is monoexponential, i.e., the 

reaction is purely bimolecular (Zhou & Kostic, 1991a). At the intennediate, but already low, 

ionic strength of 10 mM the quenching by the wild-type form and by seven of the mutants is 
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biexponential. Quenching by Asp42Asn and by the double mutant GIu59Lys/Glu60Gln 

remains monoexponential. The only component of quenching by these two mutants, and the 

slower component in the case of the wild-type form and seven other mutants, corresponds to 

the bimolecular reaction in Scheme 1. The faster component, which is evident with the latter 

eight but not with the former two quenchers, corresponds to the unimolecular reaction in 

Scheme 1. The relative amplitude of the bimolecular component decreases from 100 to less 

than 20%, while that of the unimolecular component increases from 0 to ca. 70%, as the 

cupriplastocyanin concentration is raised from 2.5 to 40 fiM. These approximate values are 

averages for all the mutants. 

We succeeded in observing directly the unimolecular component of the quenching 

(kp) by all the mutants when we lowered the ionic strength to 2.5 mM. The overall 

quenching is practically biexponential for the wild-type form and the following six mutants: 

Phe35Tyr, Gln88Glu, Asp42Asn, GIu43Asn, Tyr83Phe, and the double mutant 

Glu59Lys/Glu60Gln. Representative kinetic data for the bimolecular component of 

quenching are shown in Figure 1 and in Supporting Information, Figure S2. The quenching 

is triexponential for the following three mutants: Leu2Glu, Leul2Asn, and TyrSSHis. 

Representative kinetic data are shown in Supporting Information, Figure S3. The third phase 

was accepted or rejected on the basis of the standard deviation and the statistical null 

hypothesis with a confidence level of 95%. The relative amplitudes varied with 

cupriplastocyanin concentration as they did at the ionic strength of 10 mM, except that the 

unimolecular component dominated the overall quenching when the quencher concentration 

was 40 ̂ M. 
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The Slowest Component of Quenching and the Magnitude of Transient 

Absorbance. The slowest component, the third phase, was prominent for the mutants 

Leul2Glu, Leul2Asn, and Tyr83His, only at the ionic strength of 2.5 mM. When this 

component was observed, its rate constant was more than 3000 times higher than that for the 

natural decay and ca. ten times lower than that for the bimolecular component. As Figure S4 

in the Supporting Information shows, this component resembles the bimolecular component 

of quenching. Its amplitude (contribution to the total transient absorbance) is negligible at 

the lowest concentrations of cupriplastocyanin but becomes a major (ca. 40%) or even 

dominant (ca. 60%, in the case of Leul2Glu) fraction of the total amplitude at the higher 

concentrations of cupriplastocyanin. 

Kinetic experiments at the ionic strength of 2.5 mM gave identical results when 

performed in cuvettes made of quartz and of polystyrene. Evidently, the third phase of 

quenching is not due to adsoption of proteins to the quartz surface. 

We estimated the concentration of apoplastocyanin in the samples of the mutants. We 

set E597 = 4,900 M-^cm*' for all the mutants (Katoh el al., 1962; Sigfndsson et al., 1995, 

1996) and calculated the expected absorbance at 280 nm for those mutants that differ from 

the wild-type protein in aromatic residues (Gill & Von Hippel, 1989). The calculated 

absorbance quotients A597/A2SO each mutant agreed nicely with the lowest value recorded 

during the purification; see Supporting Mormation, Table S1. The amount of 

apoplastocyanin correlates well with the amplitude of the third phase. 

fo most experiments the magnitude of the signal (the transient absorbance of ^Zncyt at 

460 nm) was in the range 0.080-0.14. Given the noise level of ca. 0.005 absorbance units. 
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these signals allowed for good precision and relaible fittings. The three aformentioned 

mutants that contained large fi^ctions of apoproteins presented a problem, however. At the 

ionic strength of 2.5 mM, upon each addition of these mutants the transient absorbance 

became smaller. It decreased to ca. 0.020, the lowest value measurable with acceptable 

accuracy, before the mutant concentration increased to 40 |iM. The problem became easier 

when the ionic strength was raised 10 mM and dissappeared at the ionic strength of 100 mM. 

Fortunately, at all ionic strengths the absorbance remained constant upon repeated flashing; 

as many as 30 traces were recorded. This finding is correct, because the back reactions in eqs 

4 and 6 regenerate zinc cytochrome c. Since we have fewer than nine ^obs values for each of 

these three mutants at the ionic strengths of 2.5 and 10 mM, fittings concerning the 

bimolecular component could not be done well. Therefore three kf values are missing in 

Table 1. This was not a serious limitation because the intracomplex rate constants for all the 

forms of plastocyanin were determined directly, as kp for the unimolecular component of 

quenching. The kf values for the remaining seven forms nicely agree with the corresponding 

kp values. 

Kinetic Effects of Viscosity. As the representative findings in Figure 2 show, the 

intramolecular rate constant kp smoothly decreases and levels off as the solution viscosity 

increases. 

Discussion 

Plastocyanin Mutants. The structure of poplar plastocyanin, deteimined by 

crystallography (Guss & Freeman, 1983), closely resembles the structure of the bean protein 

in solution, determined by nmr spectroscopy (Moore et a!., 1991). The acidic patch of 
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carboxylate groups consists of two clusters, on either side of Tyr83. The lower cluster, 

residues 42-45, is larger than the upper cluster, residues 59-61. The hydrophobic patch, made 

up mostly of nonpolar residues, surrounds His87, a ligand to the copper atom. These 

structual features are shown schematically in Figure 3. 

Before this study, plastocyanin mutants were used to investigate reactions with the 

two physiological partners of this protein. Mutations in the hydrophobic patch (GlylO, 

Leul2, and Ala90) hinder the electron transfer to photosystem I (Haehnel et al., 1994; 

Sigfridsson et al., 1996), whereas the mutation Asp42Asn apparently hinders the association 

but not the subsequent electron-transfer step (Sigfndsson et al., 1996). It is accepted that 

cuproplastocyanin uses its acidic patch for recognition of, and its hydrophobic patch for 

transfering an electron to, photosystem I (Haehnel et al., 1994). Conversion into amides of 

certain carboxylate anions in the acidic patch hinders electron transfer from cytochrome c and 

cytochrome/, as in eq 2, but conversion of others has no significant effect (Modi et al., 

1992b; Lee et al., 1995; Sigfridsson et al., 1996). The mutants TyrSSPhe and TyrSSLeu 

resemble the wild-type cupriplastocyanin in their reactions with ferrocytochrome/and 

ferrocytochrome c, respectively (Modi et al., 1992a; He et al., 1991). The reaction with 

ferrocytochrome c is only partially analyzed, and this study is a contribution to its full 

understanding. Even though the two proteins are not physiological parmers, the mechanism 

of their reaction is interesting because it shows the essence of gating. 

We work with the nine mutants listed in Table 1. They have been characterized by 

UV-vis spectrophotometry, EPR spectroscopy, and isoelectric focusing; their redox potentials 

have been determined; and they have been used in previous kinetic studies with proteins 
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other than cytochrome c (Kyritsis et al., 1993; Sigftidsson et al., 1996). Nonpolar, neutral 

Leu 12 was changed into two polar residues — the neutral Asn and the anionic Glu. The 

nonpolar, conserved Phe35 was changed into the somewhat polar Tyr. The mutation 

GlnSSGlu introduced a negative charge between the hydrophobic and acidic patches. The 

anionic residues Asp42 and GIu43 in the acidic patch were neutralized by conversion into the 

amides. In the double mutation the pair of anions Glu59 and Glu60 were converted into a 

cation and a neutral residue, Lys and Gin. The prominent residue Tyr83, which separates the 

two acidic clusters, was replaced with two aromatic residues — the nonpolar Phe and the 

polar His. All of the aforementioned estimates of charge at pH 7.0 are based on assumptions 

that the side chains under consideration have normal pKa values. 

Mechanism of Quenching and the Rate Constants. Previous studies in this 

laboratory (Zhou & Kostic, 1991a, 1993b) with the natural plastocyanin gave much evidence 

for redox quenching of ^Zncyt, that is, for Scheme 1. Systematic experiments at ten ionic 

strengths spanning the interval 2.5 mM to 3.00 M showed that at |i < 10 mM the reaction can 

be made to occur mostly by a unimolecular mechanism, within the persistent complex, 

whereas at |i > 40 mM the reaction occurs solely by a bimolecular mechanism, within the 

transient complex. Equality of the corresponding rate constants, kp - (2.5 ± 0.4) x 10^ s*' 

and kf= (2.8 ± 0.6) x 10^ s*^ was an early evidence that, in the case of wild-type 

plastocyanin, the two complexes are the same or that they rearrange into another complex 

common to both reaction pathways in Scheme 1. Equality of the corresponding activation 

parameters (13 ± 2 and 13 ± 1 U/mol) and ̂  (-97 ± 4 and -96 ± 3 J/Kmol) is firm 

evidence that the two complexes are the same, i.e., that the wild-type plastocyanin associates 
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with zinc cytochrome c similarly at different ionic strengths (Ivkovic-Jensen & Kostic, 1996). 

In both complexes, however, electron transfer is gated by a rearrangement, which was 

quantitatively studied by analyzing the dependence of kp on solution viscosity (Zhou & 

Kostic, 1992a, 1993b). The aforementioned intracomplex rate constant actually corresponds 

to the rate-limiting rearrangement process; the electron-transfer step is faster than that and is 

not directly observed. 

In this study, working with the recombinant protein, we reproduced the previous 

results for the wild-type plastocyanin. Reassured by this reproducibility, we compared the 

reactivity of the nine mutants. The ionic strengths of 100,10, and 2.5 mM brought out the 

relevant mechanistic features in Scheme 1. The rate constant % was observed directly. The 

other rate constants were obtained from fittings to eq 7, which is derived from the so-called 

improved steady-state approximation (Espenson, 1995) and which accounts for both the 

equilibrium step (/ton /toff) and the electon-transfer step (kf). The quencher concentration, 

designated [pc(II)], is less than the total concentration, designated [pc(II)]o, because of 

association with zinc cytochrome c; see eq 8. 

At ^ 100 mM quenching of ^Zncyt by all the foims of plastocyanin is 

monoexponential. The plots of vs. [pc(II)]o are linear up to the quencher concentration 

A;off+^f + Wpc(n)] 
^n^f[pc(n)] 

(7) 

1 ^ff 
[pcdD] = [pcODlo - 2 [Zncyt]o + [pc(II)]o 

^ Ann 

(8) 

4[Zncyt]o[pc(II)]o 
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of 40 ^M. Evidently, only the bimolecular mechanism in Scheme 1 operates. At |a = 10 mM 

the quenching reactions are biexponential for all the forms of plastocyanin except the mutants 

Asp42Asn and Glu59Lys/Glu60Gln, which associate to zinc cytochrome c relatively weakly 

and therefore do not show the unimolecular mechanism in Scheme 1. At |i = 2.5 mM the 

quenching is biexponential for all the forms of plastocyanin; both the bimolecular and the 

unimolecular mechanisms in Scheme 1 operate. Most important, the rate constants for the 

same reaction determined at different ionic strengths are equal, within the error margins. 

We explained above the third phase in the quenching reaction, found with only three 

mutants and only at the ionic strength of 2.5 mM. Since apoplastocyanin is redox-inactive 

and incapable of directly quenching ^Zncyt (Zhou & Kostic, 1991a), its effect must be 

indirect. It competes with the quencher, cupriplastocyanin, for association with zinc 

cytochrome c. The reactive species, ^Zncyt, must dissociate from apoplastocyanin and 

reassociate with cupriplastocyanin. We took into account the concentration of 

apoplastocyanin in Httings of the experimental data to eqs 7 and 8. Since this protein is 

colorless, association constants for it and zinc cytochrome c could not be determined. We 

had to assume that these constants are the same as for the holo-forms of the mutants in 

question. 

Kinetic Effects of Viscosity. One of the solvent effects is to modulate protein 

motion. We know of only several prior studies of protein reactions in which viscosity was 

varied (Gavish & Werber, 1979; Beece et al., 1980; Khoshtariya et al., 1991; Ansari et al., 

1992; Nocek et al., 1991). Studies from this laboratory (Zhou & Kostic, 1992a, 1993b; Qin 

& Kostic, 1994) showed that buffered mixtures of water and several viscous liquids, glycerol 



www.manaraa.com

21 

among them, do not perturb the spectroscopic and photophysical properties of zinc 

cytochrome c and plastocyanin. These studies also showed that the smooth dependences of 

the kind shown in Figure 2 and Table 2 are caused by changes in viscosity, not in other 

properties of the solution. 

Analysis of the Viscosity Effects. Acccording to Kramers's theory (Kramers, 1940), 

the rate of crossing a diffusive barrier in a unimolecular reaction is inversely proportional to 

viscous friction. A configurational change of a diprotein complex depends on the friction of 

the proteins with each other and with the solvent. In the empirical eq 9 the two frictions are 

considered additive. The constant c has units of frequency, o is protein friction and has units 

of viscosity, T] is solvent viscosity, and E is the barrier separating the configurations of the 

diprotein complex. Combination of eq 9 with eq 10 from the theory of transition states yields 

eq 11 for the modified Kramers's theory. The term {\+i\)RTcorresponds to the constant c 

in eq 9. Because the empirical eq 12 proved useful in a previous study (Qin & Kostic, 1994), 

we use it again. 

The parameter 5 defines the dependence of the rearrangement rate on the solution 

viscosity. It is related, but not equal, to the protein friction (CT) in eq 9. Fitting of the rate 

constant (%) and the viscosity ("n) to either eq 11 or eq 12 gave the free energy of activation 

for the rearrangement (AG^) and the fiicdon parameter o or 6. 

(9) 

(10) 

(11) 
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The two fittings gave the results in Table 2, which are consistent with each other and 

with those in Table 1. The wild-type plastocyanin and all but one of the single mutants 

behave alike. The higher value of AG? for the double mutant can be attributed to electrostatic 

repulsion between the basic patch in cytochrome c and the pair of residues in the upper 

cluster whose combined charge was reversed from -2 in the wild-type protein to +1 in the 

double mutant. The relatively small variation of the friction parameters a and 8 among the 

various forms of plastocyanin indicates that solution viscosity similarly affects 

configurational dynamics of diprotein complexes containing these various forms. In other 

words, zinc cytochrome c follows more or less the same trajectory on the surfaces of all the 

plastocyanin mutants, but the obstacles along the way vary as mutations alter the electrostatic 

potential. This finding justifies the following analysis of the rearrangement pathways in 

terms of the rate constants. 

Possible Pathways of Rearrangement. A systematic search for the best match of 

the electrostatic fields of cytochrome c and plastocyanin and for the strongest electrostatic 

attraction yielded five families of stabilized configurations, which have similar electrostatic 

energies (Roberts et al., 1991). Of these five only three provide relatively good paths for 

electon tunneling from the heme to the copper site (Ullmami & Kostic, 1995). For the sake of 

consistency, we retain the original (Roberts et al., 1991) designations and symbols for these 

configurations. The so-called maximimi overlap (max ov) configuration allows for optimal 

docking, whereas the so-called maximum-overlap, rotated (max ov rot) and northern 



www.manaraa.com

23 

equatorial (n/eq) configurations provide more efficient electron-transfer paths. With different 

parametrizations in the theoretical analyses, either of the latter two configurations emerged as 

the best; the max ov configuration never did (Ullmann & Kostic, 1995). As Figure 4 shows, 

rearrangements of the first configuration into the second and the third amounts to rotation of 

the cytochrome c molecule by ca 180° or its gliding on the plastocyanin surface toward, or 

beyond, the upper edge of the acidic patch. We describe these fluctuations as 

configurational, rather that conformational, because both protein molecules are treated as 

rigid bodies. 

In the initial configuration (max ov) the exposed heme edge and the cationic lysine 

residues around it abut the two acidic clusters. During the rotation by ca. 180°, which yields 

the configuration max ov rot, this basic patch in cytochrome c remains in contact with the 

acidic patch as it moves over both the upper and the lower clusters in this patch. During the 

simultaneous translation and counterclockwise rotation by ca. 90°, which yields the 

configuration n/eq, the basic patch crosses over the upper cluster but not over the lower one 

as it approaches the residue no. 88. 

Kinetics of the Rearrangement As explained above, the rate constants in Table 1 

pertain to the configurational fluctuation that is gating the faster electron-transfer reaction. 

Equation 13 shows the conversion of the initial (i) to the rearranged (r) configuration and 

subsequent electron transfer. The wild-type and mutant forms of plastocyanin can be 

compared on the basis of the kp values, for the persistent complex in Scheme 1. 
ftp 

3Zncyt/pc(II)i "^5=^ 3zncyt/pc(II)r ^ > Zncyt+/pc(I) (13) 
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The kf values, for the transient complex, nicely agree with them. Because the error margins 

(rounded to one digit) include two standard deviations on either side of the fitted value of 

differences exceeding the margins are significant. The small effects of replacing Leul2 

with other residues are most likely due to conformational perturbations of the active site, 

which are evident in changes of the redox potential and the EPR and UV-vis spectra of these 

mutants (Sigfiridsson et al., 1996). Indeed, the replaced atoms of Leu 12 in the wild-type 

protein approach the copper atom to 4 A. 

Only two mutants, Gln88Glu and the double mutant Glu59Lys/Glu60Gln, truly differ 

from the wild-type protein in the kinetics of rearrangement. In the analysis of these 

differences, we assume that mutation alters the energetics of rearrangement, but not the initial 

docking configuration and the rearrangement trajectory. This assumption is justified by the 

results in Figure 2 and Table 2. These results, which were discussed above, show that 

solution viscosity identically affects the complexes 3Zncyt/pc(II) containing the wild-type 

form and all the mutants of plastocyanin. 

The results in Table 1 clearly show that mutations in the lower cluster do not affect 

the rearrangement, whereas those in the upper cluster and at the position no. 88 do. Although 

the electrostatic changes in the lower cluster are smaller than those in the upper one, the 

kinetic results are precise enough and the panem consistent enough to warrant our 

conclusion. Moreover, the direction of change agrees with the electrostatic considerations. 

Decreasing negative charge in the upper cluster weakens the attraction for the basic patch of 

cytochrome c; increasing positive charge in the upper cluster repels the basic patch; and 

introducing a negative charge at position no. 88 attracts the basic patch. Moreover, the 
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residue Gln88 is involved in the most efficient electron-tunneling path in the configuration 

n/eq (Ullmann & Kostic, 1995). Both the efifects and the noneffects of mutations consistently 

point at the northern equatorial (n/eq) configuration, or one similar to it, as the reactive one. 

Conclusion and Prospects 

A recent analysis of electron-tunneling paths between the heme and the blue copper 

site indicated two likely pathways for the rearrangement of the diprotein complex cyt/pc from 

the configuration optimal for the docking interaction to the conflguration optimal for the 

electron-transfer reaction (Ullmann & Kostic, 1995). This theoretical study guided us in the 

present experimental study. The effects of ionic strength and of viscosity on the protein 

rearrangement involving the wild-type form and nine mutants of cupriplastocyanin showed 

which of the two pathways is likely for this rate-limiting rearrangement of the complex 

3Zncyt/pc(II). On the basis of this study, we will design new plastocyanin mutants and 

explore in greater detail the dynamics of configurational fluctuations that gate the interprotein 

electron-transfer reaction. 
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Table 1. Properties of recombinant piastocyanin 

pc(II) 
mutant 

A2!io/As97 ratio 

lowest maximum 
obtained in amplitude of the 

calculated purification final %Znpc third phase (%) 

wild type 1.1 1.08 1.34 15 19 
Leul2Glu 1.1 1.15 3.22 58 64 
Leul2Asn 1.1 1.13 1.90 32 41 
Phe35Tyr 1.5 1.41 1.83 16 23 
Gln88Glu 1.1 1.08 1.38 18 22 
Glu59Lys/ 1.1 1.15 1.39 14 17 

Glu60Gln 
Tyr83Phe 0.8 0.78 1.06 21 26 
Tyr83His 0.8 0.77 2.16 53 64 
Asp42A.sn l.l 1.08 1.38 14 22 
Glu43Gln 1.1 1.08 1.38 17 22 
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Table 2. Protein association and leanangement of the diprotein complex ^Zncyt/pe(II) from the docking configuration into 
the electron-transfer configuration^ 

surfacc location pc(IJ) mutant 

local charge^ 

wild lype mutant 10-Xn(M-' «-') 10 10-% (M"') !0-5^f(s ') 10'Ar(s-') 

wild type 100 3.3 300 ± 200 2 .0 ± 0.4 2.1 ±0.1 
hydrophobic patch Leul2Glu 0 -1 1.6 ±0.2 

Lcul2Asn 0 0 2.4 ± 0.5 
Phe35Tyr 0 0 41 4.2 100 ± 50 2.1 ±0.3 2.0 ± 0.2 

between the patches GlnSSGlu 0 -1 200 8.0 300 ± 200 3.1 ±0.6 3.1 ±0.3 
upper acidic cluster GIuS9Lys/Glu60Gln -2 + 1 2.6 14 2± I 0.18 ±0.04 0.16 ±0.02 
bet^veen the clusters Tyr83Phe 0 0 340 3.8 900 ± 500 2.1 ±0.3 2.0 ± 0.2 

Tyr83His 0 0/M 1.6 ±0.4 
lower acidic duster Asp42Asn -1 0 no 28 40 ± 20 2.3 ± 0.3 2.4 ± 0.2 

Glu43A!in -1 0 51 9.1 60 ±30 2.0 ± 0.5 2.2 ±0.3 

* This reunangemenl gates the elcutron-tritniifer reactions in eqs 3 and S. The conditions were us follows; sodium phosphate buffer at pH 7.0 
and an ionic strength of 2,5 niM at 293 K. Assuming normal pAf. values. 
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Table 3. Fittings to two equations of the dependence on the solution viscosity of the 
rate constant for the rearrangement of the diprotein complex •'Zncyt/pc(II) from the 
docking configuration into the electron-transfer configuration® 

eq 11 eq 12 

mutant A£?*aJ/mol) a ACT* (kJ/mol) <3 

wild type 4 3  ± 1  0.7 ±02 4 3  ± 1  0.8 ±0.1 
Leul2Asn 4 3  ± 1  1.2 ±02 4 3  ± 1  0.7 ±0.1 
Phe35Tyr 4 3  ± 1  0.9 ±02 4 3  ± 1  0.7 ±0.1 
GlnSSGlu 43 ± I 1.5 ±02 4 3  ± 1  0.6 ±0.1 
GIu59Lys/ 4 9  ± 1  0.7 ±02 49 ± 1 0.9 ±0.1 

Glu60Gln 
Tyr83Phe 4 3  ± 1  0.9 ±02 4 3  ± 1  0.7 ±0.1 
Asp42Asn 4 3  ± 1  0.7 ±02 4 3  ± 1  0.8 ±0.1 
GIu43Asn 4 3  ± 1  1.3 ±02 43 ± 1 0.7 ±0.1 

" This rearrangement gates the electron>tiansfer reactions in eqs 3 
and S. For the conditions, see Table 2. 
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10 20 30 40 
[pc(ll)le.^M 

Figure 1. Dependence of the bimolecular rate constant Aiobs reaction in eq S 
on the concentration of cupriplastocyanin. The conditions were as follows: sodium phosphate 
buffer at pH 7.0 and ionic strength of 2.5 mM at 293 K. (a) Wild-type protein, (b) single 
mutant Asp42Asn, and (c) double mutant Glu59Lys/Glu60Gln. The lines are fittins to eqs 7 
and 8. The error bars include two standard deviations. 
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Figure 2. Dependence on solution viscosity of the unimolecular rate constant kp for 

the rearrangement of the diprotein complex 3Zncyt/pc(II) from the docking configuration into 
the electron-transfer configuration. Viscosity (t]) of a sodium phosphate buffer having pH 
7.00 ± 0.05 and ionic strength of 2.5 mM was adjusted with glycerol, (a) Wild-type 
cupnplastocyanin; (b) single mutant Asp42Asn; double mutant Glu59Lys/Glu60Gln. The 
lines are fittings to eq 12. The error bars include two standard deviations. 
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Figure 3. The structure of wild-type plastocyanin showing the copper site and 
locations of the mutated residues. All the circled numerals mark the a-carbon atoms, except 
for no. 60, which marks the y-carbon atom in order to avoid overlap. 
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Figure 4. Two trajectories, shown with arrows, for rearrangement of the diprotein 
complex. Plastocyanin (blue) is stationary, while cytochrome c (red) moves. The atomic 
coordinates are taken from Roberts et aL, 1991. The initial configuration, designated max ov, 
provides optimal docking. The rearranged configurations, designated n/eq and max ov rot, 
provides more efBcient electron-tunneling paths from the heme to the copper ate. The two 
metal atoms are highli^ted; all the ligands to copper and the porphyrin ring are shown as 
wireframe models. The basic (positively charged) patch around the exposed heme edge 
moves across the acidic (negatively charged) patch in plastocyanin. In the configuration n/eq 
the basic patch reaches the upper ^ge of the acidic patch and the area between the acidic and 
hydrophobic patches, marked by the residues nos. 59,60, and 88. In the configuration max ov 
rot the cytoctoome c molecule is rotated by ca. 180°, mostly over the tower part of the acidk; 
patch, marked by the residues nos. 42 and 43. Shown on the left side are the intact protein 
molecules. Shown on the right side is a magnified, local vew of the plastocyanin sur&ce 
through the molecule of cytochrome c. The acklK residues Asp42, Glu43, Glu59, and Glu60 
in the wild-type plastocyanin, the mutations of which proved partknilarly informative, are 
highlighted as bi^-and-stkk models; their carboxylate oxygen atoms are shown in red. 
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CHAPTER 3. REDOX REACTIVITY AND REORGANIZATION ENERGY 

OF ZINC CYTOCHROME C CATION RADICAL 

A paper submitted to Inorganic Chemistry 

Milan M. Cmogorac and Nenad M. Kostic 

Abstract 

Little is known about transient intermediates in photoinduced electron-transfer 

reactions of metalloproteins. Oxidative quenching of the triplet state of zinc cytochrome c, 

^Zncyt, is done at 20 °C, pH 7.00 and ionic strength of 1.00 M, conditions that suppress the 

thermal back-reaction and prolong the lifetime of the cation radical, Zncyt"^. This species is 

reduced by [FeCCN)^]^-, i:W(CN)8]^, [Os(CN)6]'**, [Mo(CN)8]''*, and [Ru(CN)6]^ complexes 

of similar structures and the same charge. The rate constants and thermodynamic driving 

forces for these five similar electron-transfer reactions were fitted to Marcus theory. The 

reorganization energy of Zncyt"^ is X=0.38(5) eV, lower than that of native cytochrome c, 

because redox orbital of the porphyrin cation radical is delocalized and possibly because 

MetSO is not an axial ligand to the zinc(II) ion in the reconstituted cytochrome c. The rate 

constant for electron self-exchange between Zncyt"^ and Zncyt, itii=L0(5)10' M''s"', is large 

owing to the extended electron delocalization and relatively low reorganization energy. 

These results may be relevant to zinc(II) derivatives of other heme proteins, which are often 

used in studies of photoinduced electron-transfer reactions. 
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Introduction 

Electron-transfer reactions of metalloproteins play essential role in many biological 

processes. Replacement of iron ions in the active site of myoglobin, hemoglobin, 

cytochrome c peroxidase, cytochrome c, and other heme proteins has been used extensively 

to probe the structure, function, and reactivity of these proteins. Cytochrome c,l'2 designated 

cyt, is particularly well suited for studies of electron-transfer reactions since it is very well 

characterized and since its structures both in crystal and in solution are precisely known. 

Although electron-transfer reactions involving cytochrome c and its derivatives 5-7 have 

been much studied, many questions remain unanswered. 

Replacement of iron(n) with zinc(II) does not perturb the overall structure of the 

protein.8 Zinc cytochrome c, designated Zncyt, offers many advantages over the native 

species. It is easily excited by the laser pulse and converted to the triplet state, ^Zncyt. This 

long-lived state has been used as a strong reducing agent in several studies.^'^'^'^l Recently 

it was used also as an oxidizing agent, in reactions with hexacyanoferrate(n) anion and 

conjugate bases of ethylenediaminetetraacetic acid (EDTA).^^ The advantages of ^Zncyt are 

that external redox reagents are not needed to initiate the reaction between Zncyt and its 

panner. In these photoinduced reactions short-lived intermediates are formed: zinc 

cytochrome c cation radical (Zncyt"  ̂in oxidative quenching of ^Zncyt and zinc cytochrome c 

anion radical (Zncyf) in reductive quenching of the triplet state. In subsequent thermal 

reactions the ion radical intermediates are converted back to Zncyt, which then becomes 

available for the next cycle. The thermal reaction is usually faster than the quenching 
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reaction since radical intermediates are usually more reactive than the triplet excited state. 

Thus the difficulty in detecting the radical intermediates. 

The cation Zncyt"*" has been partially characterized by UV-vis spectrophotometry and 

differential-pulse polarography.^ To our knowledge, however, its reactivity has not been 

studied. Here we examine the kinetics of reaction in eq 1, between Zncyt"^ and transition-

metal cyano complexes. We analyze the rate constant for Zncyt"^ reduction in terms of 

Marcus theory of electron-transfer reactions, determine reorganization energy and electron 

self-exchange rate constant, and discuss the implications of our findings for electron-transfer 

reactions of cytochrome c. 

Chemicals. Distilled water was demineralized to a resistivity greater than 17 MQcm. 

Chromatography resins and gels were purchased from Sigma Chemical Co. and Amersham 

Pharmacia Biotech, Inc. Nitrogen, hydrogen fluoride, and ultrapure argon were purchased 

from Air Products, Co. Potassium tetrahydroborate was synthesized by a standard 

procedure. Potassium hexacyanoruthenate(II) was purchased from Alfa ^ar. All other 

chemicals were purchased firom Fisher Chemical Co. 

Synthesis and Purification of Cyano Complexes. The following complexes salts 

were synthesized by standard methods: K4[Mo(CN)8] 21120; K4[Os(CN)6]-31120; 

K4[W(CN)8] 21120; and K3[W(CN)8]"2H20.17 The salts were dissolved in several mL of 

water, methanol was added until precipitation started. The solution was cooled to 4 °C and 

(1) 

Experimental Section 
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left for one day. Translucent and opalescent crystals were filtered and rinsed twice with 

ethanol. The purification was done in the dark, to avoid complex decomposition. 

Buffers. All buffers were made fresh. Phosphate buffer at pH 7.00 had ionic strength 

of 1.00 M: 10 mM from the phosphate salts and 990 mM from NaCl. The pKa value of the 

H2P04' ion depends on ionic strength, and we took this dependence into account in adjusting 

the pH. Acetate buffer at pH 4.00 had ionic strength of 40 mM. 

Proteins. Horse-heart cytochrome c (type VI) was purchased from Sigma Chemical 

Co. The iron-firee form was made, purified, and reconstituted with zinc(n) ions by a 

modification^O of the original procedure.^l- The product, zinc cytochrome c, was handled at 

4 °C in the dark. The criteria of its purity were the absorbance ratios, A423/A549>15.4 and 

A549/A585<2.0, and the rate constant of natural decay of the triplet state, less than 120 s''.22 

Concentration of Zncyt was determined spectrophotometrically, based on its molar 

absorptivity 8423=2.43-10^ NT'cm"'.— 

Recombinant spinach plastocyanin was prepared by the previously published method 

for overexpression in Escherichia coli.-^ The protein was puriHed first with a DE32 column 

and then with a 26/10 Q Sepharose high-performance FPLC column from Amersham 

Pharmacia Biotech, Inc. Plastocyanin was oxidized with excess of K3[Fe(CN)6] and reduced 

with a small excess of ascorbic acid. The protein was concentrated and buffer was exchanged 

with Centricon (Amicon, Millipore Corporation) and Macrosep (Filtron Technology Co.) 

concentrators. The criterion for purity was A278/A597<1.2. The concentration of the protein 

was determined spectrophotometrically, on the basis of its molar absorptivity £s97=4700 NT 

'cm '. The reduction potential of plastocyanin was taken to be Evi=0.384 V.23 
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Solutions of both proteins in a phosphate buffer at pH 7.00 and ionic strength of 

2.5 mM were stored at 77 K. 

Physical Measurements. Absorption spectra were recorded with a Peridn-Elmer 

Lambda 18 spectrophotometer. The 'H and NMR spectra of solutions in D2O were 

recorded with a Bruker DRX-400 spectrometer. Ethanol was used as an internal standard, 

and 10,000 { 'H} scans were recorded 5 s apart. 

Laser flash spectroscopy on microsecond time scale was done with a standard 

apparatus.9'24 The triplet state "Zncyt was created by 0.4-^s pulses of light from a Phase-R 

(now Luminex) DLUOO laser containing the dye rhodamine 590. The samples were 

deaerated for 30 min by gentle flushing with ultrapure argon. The cell jacket was connected 

to a 30-L circulating bath Forma 2067, which maintained the temperature at 20.0±0.2 °C. The 

concentration of zinc cytochrome c was always 10 |iM. The triplet state, ^Zncyt, was 

monitored at 460 nm, where the difference in absorbance between the triplet and the ground 

state is greatest.-^ The formation and disappearance of the zinc cytochrome c cation radical, 

Zncyt"^, were monitored at 675 nm, where the difference in absorbance between the cation 

radical and the ground state is largest.5.8 Kinetic traces at 460 nm were averaged over five 

flashes, while kinetic traces at 675 nm were averaged over ten flashes. The concentration of 

the triplet state depended on the intensity of the laser pulse and was ca. 1 ^M, much lower 

than the cupriplastocyanin concentration. Thus kinetic conditions for pseudo-first order 

reactions were achieved. 

Cyclic voltammograms of metal complexes were recorded with a IUDE4 

bipotentiostat and a disk electrode having a surface area of 0.165 cm^ from Pine Ihstiument, 
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Co. A three-compartment electrochemical cell separated the working, reference, and counter 

electrodes. A saturated calomel electrode from Fisher Scientific Co. provided the reference 

potential. The counter electrode was a coiled platinum wire with the surface area of ca. 

5 cm". Supporting electrolyte was a phosphate buffer at pH 7.00 and ionic strength of 

1.00 M. Data were collected with a personal computer equipped with an AT-MIO-16XE-50 

board from National Instruments and with Lab View software. The scan rate was 50 mVs'^ 

for Ru(CN)6'^ because of the high background current at potentials greater than 1.2 V, and 

100 mVs"' for the other complexes. 

Kinetic Calculations. Kinetic traces from separate flashes were Htted, and results 

statistically analyzed, with SigmaPlot v3.06 software, using the least-square averaging 

method. The correlation coefficients R' for the linear plots that provided the rate constants 

were greater than 0.990. The error margins for all results include two standard deviations and 

correspond to the confidence limit greater than 95%. The work terms, Wy, and correction 

factors, Wi2 and/u, were calculated with Microsoft Excel 97. Rate constant for diffusion and 

for activation-controlled electron transfer were calculated with modifications of the program 

kindly provided by Professor Claudia Turro.-^ 

Results 

Synthesis and Characterization of Cyano Complexes. Absorptivities at 190 nm of 

K4[Mo(CN)8]'2H20, K4[0s(CN)6]-3H20, and K3[W(CN)8]-2H20 were greater than the 

published value26,27 because KCN, used in syntheses, was in excess and cocrystallized with 

the complex salts. For example, the salt K4[Os(CN)6]-31120 showed two ^^C NMR 
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resonances, at 142.3 and 165.1 ppm. The former is due to the cyano ligand; the latter, to the 

free CN" ion.28 Recrystallization of crude salts from water failed because both they and KCN 

are very soluble in water.29 Fractional crystallization from aqueous methanol succeeded. 

Absorption spectra of pure salts agreed with die published ones; NMR spectra of pure 

salts contained only one resonance, due to the cyano ligands. 

Because of a discrepancy in one report^O about the reduction potentials of 

Os(CN)6''''^' and Fe(CN)6'^ '^', we determined the Ev4 values of all the complex anions. 

Phosphate buffer at pH 7.00 and ionic strength of 1.00 M was used to record background 

current. Cyclic voltammograms of each complex had two well-resolved peaks, corresponding 

to oxidation and reduction by one electron. The results in Table 1 completely agree with the 

other reports.31-34 

Reduction Potential of Zncyt" .̂ The reduction potential of the Zncyt'^/Zncyt couple 

at ionic strength of ca. 0.200 M is 0.80±0.05 V.5 Our kinetic experiments, however, were 

done at the ionic strength of 1.00 M. Reduction potential of horse-heart cytochrome c 

changes only slightly, from 0.260 to 0.240 V, when ionic strength is changed from 0.200 M 

to 1.00 M.2 We calculated, by Debye-Hiickel theory, the change in activity coefficients as 

ionic strength is raised from 0.200 to LOO M. The corresponding change in the reduction 

potential of Zncyt"*" was 0.03 V, less than the error in the differendal-pulse polarography 

(0.05 V).5 Therefore we set the reduction potential of Zncyt* at 0.80 V in our calculations. 

Formation of Zncyt* .̂ Laser pulse excites the porphyrin chromophore in zinc 

cytochrome c, and we observe the triplet state (eq 2). This excited state decays to the ground 

state monoexponentially (eq 3), with the rate constant of 80±5 s*'. 
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Z n c y t  — ^ Z n c y t  

3n ^ natural decay ^ 
Zncyt > Zncyt (3) 

"• k 
"Zncyt + pc(n) —Zncyt^H- pc(I) (4) 

When cupriplastocyanin, pc(II), is present at ionic strength of 1.00 M, the triplet state 

disappears monoexponentially, as shown in Figure la. This quenching is the so-called 

forward electron-transfer reaction^ in eq 4, the rate of which is linearly proportional to the 

concentration of pc(n). Change in absorbance at 675 nm (Figure lb, upper trace) indicates 

the formation of the cation radical, Zncyt'^.5.9 Traces at 675 nm were fitted to eq 5, in which 

a\ and a? are the amplitudes, and k\ and kz are the first-order rate constants, for appearance 

and disappearance of Zncyt^. If this were the only species absorbing at 675 nm, the 

amplitudes ai and ai would be the same.35 But the triplet state also absorbs at this 

wavelength and disappears at the same rate, k\, at which the cation radical appears. 

Therefore, there are only two, rather than three, exponential terms.^^ 

AA = — (5) 

The change in absorbance was ca. five times smaller at 675 nm than at 460 nm. To 

improve accuracy in fittings of the smaller signals to eq 5, we determined ki precisely firom 

the strong signals for the disappearance of ^Zncyt at 460 nm, fixed this ki value, and allowed 

a\, az, and kz to vary. As more pc(II) was added, the maximum transient concentration of 

Zncyf^ increased as well. In the thermal (so-called back) reaction (eq 6), direction of electron 

transfer is reverse of that in the forward reaction (eq 4), and the system returns to the state 

prior to the laser pulse, namely Zncyt and pc(n). 
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Zncyt+  pc ( I )  —Zncyt  +  pc(n) (6) 

Initial concentration of pc(II) was always 30 jiM because then we were able to 

observe Zncyf^ clearly. Under the aforementioned conditions the observed first-order rate 

constants were ^i=700±20 s"' and ^2=20±1 s''. 

Reduction of Zncyf*  ̂by Cyano Complexes and Side Reactions. When [OsCCI^e]*^. 

[Mo(CN)g]'^, or [Ru(CN)6]'^ complex is added to the reaction in eq 4, the rate constant kz (for 

disappearance of Zncyt^ increases, as the lower trace in Figure lb shows. This first-order 

rate constant is linearly proportional to the concentration of the cyano complex, as Figure 2 

shows, and the intercept of fitted lines with y-axis is the first-order rate constant for the 

'background' reaction of Zncyt"*" and pc(I). The rate constants kz are given in Table SI in the 

Supporting Information. Since the cyano complexes were present in excess over Zncyt"', the 

pseudo-first order conditions were satisfied. Plots of kz versus the concentration of the cyano 

complexes gave the second-order rate constants kr for the reaction of interest (eq 1), which 

are given in Table 1. 

With [Fe(CN)6]'^ and [W(CN)8]^ complexes the first-order kinetic plots showed 

slight curvature. Moreover, the rate of ^Zncyt quenching in the presence pc(II) increased with 

addition of these two complexes. To check whether the triplet was directly quenched by the 

cyano complexes, we separately treated ^Zncyt with relatively high concentrations (up to 

40 nM) of all five 4- complexes in the absence of pc(n). None of the [M(CN)n]'*" complexes 

quenched ^Zncyt. We concluded that the observed quenching in the complete reaction 

mixtures containing [Fe(CN)6]^ and [W(CN)8]^ is due to the [Fe(CN)6]^' and [W(CN)8]^" 

complexes, products of oxidation of the corresponding 4- complexes by pc(II). To test this 
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hypothesis, we treated a 30 ^iM solution of pc(II) with various concentrations of [Fe(CN)6]'^ 

and [WCCI^Os]*^ ions and easily detected bleaching of the blue color (reduction of the protein) 

by UV-vis spectrophotometry. This side reaction is shown in eq 7, in which M is Fe or W 

and n is 6 or 8. The equilibrium constant, Kc, is 21±5 for [Fe(CN)6]''''^" and 1200±2(X) for 

[W(CN)8]''"'^". Those results agree with the Kc values determined from the reduction 

potentials, which are 17 and 1070. 

^ Ke 
pcOI) + [M(CN)„]'^ • • pc(I) + [M(CN)„]^ (7) 

The 3- cyano complexes formed in one side reaction (eq 7) undergo another side 

reaction, shown in eq 8. In two series of control experiments, we separately determined the 

» i 
rate constants listed in Table 1. Because the reaction competes with the reaction k{, 

and in both of them electron transfer occurs in the forward direction, the corresponding rate 

constants have similar symbols. 

3 Ic 4 
'Zncyt + [M(CN)„] " Zncyt"" + [M(CN)„] " (8) 

I 
We can quantitatively determine the contributions of the reactions k{ (eq 4) and 

(eq 8) to the observed rate of ^Zncyt quenching in the presence of both pc(II) and the 

[M(CN)6]''" complex of Fe(III) or W(V). For example, the rate constant of ^Zncyt quenching 

by 30 ^M pc(II) is Ai=6(X)±20 s''. Upon addition of 10 nM [W(CN)8]'*' the rate constant 

becomes fei=1200±100 s'\ an increase of ca. 600 s*'. The concentration of [W(CN)8]^*. 

calculated firom the given concentrations of the reactants and the known Ke in eq 7, is 

0.47 |iM. Therefore, the contribution to ki from the side reaction in eq 8 is 

(1.15-lO' M"'s"')x(4.7-10'' M)=540 s"^s:600 s"'. The additional quenching of ^Zncyt by the 3-



www.manaraa.com

46 

complex is accounted for. Because the 4- complexes of Os(II), Mo(IV), and Ru(n) have too 

high reduction potentials to be oxidized by pc(II), they do not undergo the side reaction in eq 

7, the corresponding 3- complexes are not formed, and the side reaction in eq 8 does not 

occur. Although the side reactions in eqs 7 and 8 with the iron and tungsten complexes are 

unavoidable, we studied their kinetics in detail and separated these reactions from the 

reaction of interest, k^. 

Concentrations of the 4- complexes of Fe(II) and W(IV) in the reaction mixture could 

not be determined simply from the amounts added to the mixture, because of the side 

reaction in eq 7; we calculated these concentrations on the basis of K*. In the cases of Os(n), 

Mo(IV), and Ru(n), the concentrations of the 4- complexes could be determined simply. 

Plots of first-order rate constants vs concentration of the [M(CN)n]^ complexes were 

linear. The slopes of these plots yielded the second-order rate constants kt for the reduction of 

the cation radical Zncyf^ by [M(CN)n]'*" complexes (eq 1). 

Reoganization Energy of Zncyt'*' and its Reaction with Cyano Complexes. 

Driving force, , for the reaction in eq 1 was calculated from the reduction potentials of 

Zncyt"^ and the [M(CN)n]'̂  complexes corrected for the work required to bring the reactants 

and the products together (AG ° =AG ® - wi2 + W2i). The rate constants kt and AG J, listed in 

Table 1, were fitted to eqs The result is shown in Figure 3. 

(9) 

U(r) 
kbT 

(10) 
r 
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^diff ~ 
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1000jfi?rr 

U(r) 
k^T 

(11) 

(12) 

(13) 

U(r) = Zi Zo 

D , t { I + P T ^  

Ds ^ b T 

(14) 

(15) 

For bimolecular electron-transfer reaction, the expression for observed rate constant 

kr has the form of a consecutive reaction mechanism consisting of activated (^acO and 

diffusional (^ff) rate constants, as in eq 9.38,39 The latter, calculated from eqs 13-15, is 

1.810'° M"'s"'; this value is marked with a horizontal line in Figure 3. The activated electron 

transfer occurs over a range of distances and the rate constant is obtained by integrating 

the rate constant for the electron transfer ^t(r) over the equilibrium distribution of reactant 

separation distances (r^ exp(-U(r)//tbT). The electronic coupling between the electron donor 

and the electron acceptor (so-called tunneling matrix element), HDA> in cm'^ was calculated 

from eq 12. is the value of Had when d=do taken to be 200 cm'^ for cytochrome c^.41 

and do is the edge-to-edge distance between cytochrome c and cyano complexes, defined as 
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3 A to account for electronic clouds of the outermost atoms of each reactant;37 The distance 

d at which the electron is transferred from cyano complex to cytochrome c is related to the 

sum of the reactants' radii cf = r - Oi - oj where Oi and oj are radii of cytochrome c and cyano 

complex. Fittings of this kind are done to different forms of the same equations, in which 

quantities have various units. There are many ways to do this task correcUy so we briefly 

explain our fittings to avoid confusion. In eqs 10-13 A=6.625-10'^'* Js; iVo=6.023-10^ mol"'; X 

is the reorganization energy in Jmol"'; R=8.314 JK'^mol"'; T is in K; and AG° is in Jmol"'. 

Intermolecular potential U(r) between two highly charged spheres (adequate representations 

of cytochrome c and the cyano corapiex)^^ is dominated by electrostatic interactions. We 

treat this potential according to Debye-Hiickel theory, eq 14. In eqs 13 and 14 

D=8.08-10''°mV is the sum of diffusion coefficients for cytochrome c and [M(CN)n]'*'; 

Ds=8.89-10'' Fm"' is the static dielectric constant of the solvent; kb=1.3810'^^ JK"' is 

Boltzman's constant; and p=1.05-10® NT'^m"' is a factor at 293 K, defined in eq 15. 

In the fittings of AG° and to eqs 9-12 there were only two variable parameters, all 

the other quantities were known. The best fit, shown in Figure 3, yielded d=3.8 A and 

X=0.35±0.05 eV. 

Calculation of Self-Exchange Rate Constant for Zncyt*  ̂and Zncyt The self 

exchange redox reaction in eq 16 cannot be studied directly, but the reaction in eq 1 can. We 

used the Marcus cross-relation (eq 18) to estimate the rate constant ku. The rate constant kr 

(in general case it is Ario) is proportional to the self-exchange rate constants kn (eq 16) and kn 

(eq 17). The equilibrium constant Kr (in general case it is K12) for the reaction of interest (eq 

1), the factor fn, and the work W\z requited to bring two reactants together are unitless 
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numbers calculated from eqs 19-22; see Table 1. The other quantities are as follows: z is 

number of electrons exchanged (one in our case), AEvi is in volts, F=96485 Fm"', 

R=8.314 JK 'mol"', T=293 K, and the collision frequency Z=110" M"'s''.37,42 

k. 
Zncyt + Zncyt + IL Zncyt + Zncyt (16) 

[M(CN)„F • + [m( C N ) J ' " [ m(CN)J'"+ [M(CN)„F"(I7) 

^11 = ^r 

^22-Kr-/l2-W/2 

f\ 2  = exp 

Kj. = exp 

f 

I n K .  

zFAE 

RT 

W12-W21 

RT 

. In ^11 '^22 I ^11 "^^22 
Z" RT 

Wi2=exp ^12 ^ ̂ 21 ~ '^11 ~ ^22 

2RT 

Zi Zj ^ 
exp(ggiV^ exp()3(7jV^ 

l  +  P a ^ y l J i  1  +  P G ^ ^  
w- — y 

(18) 

(19) 

(20) 

(21) 

(22) 
2 D ^ i ' Q x p [ P i ^ )  

When the reactants bear opposite charges, the Marcus cross-relation may be 

inapplicable.^^ The problems can be minimized by raising ionic strength, as we did. 

Furthermore, we used Debye-HUckel theory and corrected with so-called work terms, Wij, the 

driving forces for the reactions in eqs 1,16, and 17. 
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In eq 22, Oi and Oj are the sums of radii (in m) of reacting ions and predominant 

counter ions: Zncyt and Zncyt^ (17.5-10"^° m) with CI" (1.8110"'° m) and [Fe(CN)6]'*' 

(4.50-10 '° m), [Ru(CN)6]'^ (4.70-10-'° m), and [W(CN)8]^, [Os(CN)6]^-, and [Mo(CN)8]'^ 

(4.80-10''° m each) with Na"^ (I.IO-IO"'® m).^^ Also in eq 22 ^ is ionic strength in mohn'^; 

charges Zj and zj are +7 for Zncyt^, +6 for Zncyt, -4 for [M(CN)n]'^, and -3 for [M(CN)n]^"; 

elemental charge e= 1.6-lO" C; dielectric constant of the medium is Ds= 4 e eo= 

8.8910-® Fm''; and radius of transient complex, r, is the sum of the Zncyt"^ and [M(CN)n]'*-

radii in meters. 

1 = exp(2 X intercept) (23) 

Since the self-exchange rate constant k\ i is needed for the calculation of/u, we used 

the experimental result^^ for cytochrome c, A:ii= S-IO** M"' s"', as an approximate starting 

value in our calculations. The self-exchange rate constant of interest, itu, can be determined 

from Figure 4 and eq 23. The intercept with the vertical axis was calculated iteratively, with 

the ^11 value from the previous cycle as input for the next. The iterations converged when the 

self-consistent result was obtained: A:n=(1.0±0.5)'10' NT's"'. 

Discussion 

The Chemical Reactions. All the reactions occurring in this intricate system are 

shown in Scheme 1. Excitation (Av) of the porphyrin chromophore in Zncyt indirectly 

produces the long-lived triplet state, ^Zncyt. In the absence of a quencher, this state decays to 

the ground state. The blue copper protein cupriplastocyanin, pc(II), quenches ^Zncyt in a 

reaction that is much faster than natural decay; the rate constant of this forward 
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electron-transfer reaction is designated fcf. The copper site becomes reduced into pc(I), and 

the porphyrin becomes oxidized into Zncyt^. This cation radical is short-lived because it 

undergoes the back electron-transfer reaction, designated ^b- In this thermal reaction, an 

electron moves from the copper site to the porphyrin; the Zncyt^ is reduced and converted 

back to Zncyt. The cycle is completed. 

The transient species Zncyt"^ is the main object of our study. We separately add five 

cyano complexes [M(CN)n]'^ to reduce Zncyt"^, in competition with pc(I). The fraction of 

Zncyt^ reduced by [M(CN)n]'*" depends on the concentration of the cyano complex and the 

relative magnitudes of kt and Reduction of Zncyt"^ by [M(CN)n]'^ produces Zncyt and 

[M(CN)q]^". This 3- complex oxidizes pc(I) to regenerate the 4- complex and pc(n). Again, 

the cycle is completed. 

Kinetics becomes further complicated if a fraction of the [M(CN)n]^" complex is 

oxidized to [M(CN)n]^' by pc(n). This was the case with [FeCCN)^]'*' and [W(CN)8]'*'. the 

only two complexes thermodynamically capable of this reaction. Because this equilibrium 

(shown in eq 7) is established prior to the laser pulse, it is omitted from Scheme 1. The 

important consequence of this side reaction is that, in addition to Zncyt, pc(II), and 

[M(CN)n]'*', which are added to the solution, the reaction mixture contains also some 

^ I 

[M(CN)n]^*. This is a new species, which undergoes a new reaction, . The equilibrium 

process in eq 7 also causes a small conversion of pcQI) to pc(I). We quantified this 

conversion in all experiments and adjusted the concentration of both forms of plastocyanin in 

kinetic calculations concerning the reactions kf and k^,. The measured rate constant kt, used in 

these calculations is (3.6±0.2)-10® M*^s"'. 
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Requirements of the Reductants for Zncyf^. To serve as a reducing agent in 

reaction of interest (eq 1 and in Scheme 1), a compound should meet several requirements. 

Because Zncyt"^ bears a charge +7 at pH 7.00, its reaction partner should bear a negative, 

preferably high, charge, for favorable association. The compound should undergo only 

one-electron oxidation, to match the oxidizing capacity of Zncyt*. The compound should be 

stable in both the reduced and the oxidized form, that is, as both the reactant and the product 

in eq 1. Because we trigger the thermal redox reaction photochemically, the reductant and its 

oxidized form must not absorb in the wavelength ranges in which Zncyt is excited (by the 

laser pulse) and in which ^Zncyt and Zncyf^ are monitored (by the spectrophotometric beam). 

The five transition-metal cyano complexes in Table 1 meet all of these requirements. 

Moreover, they have similar, highly symmetrical shapes and the same charge. Because of this 

uniformity, we did not have to be concerned with the effects of binding affinity (i.e., the 

association constant) on the bimolecular rate constant These five complexes constitute 

an ideal series of reductants with which to test the reactivity of Zncyt"*" as an oxidant. 

To reduce Zncyt"*", an agent also must be a member of a redox couple with reduction 

potential of ca. 0.80 V or lower. To avoid reducing pc(n), whose reduction potential is 

0.384 V, the reduction potential of the suitable couple must be ca. 0.40 V or higher. The 

values near this limit posed a problem; both [Fe(CN)6]'^ and [W(CN)8]'^ ions partially reduce 

pc(II). We overcame this problem by careful studies of the reactions in eqs 7 and 8. Knowing 

the exact concentration of [Fe(CN)6]^* and [W(CN)8]^", we were able to account for 

contributions to the quenching from both rate constants, kf and kr. Because the complexes 

[Mo(CN)8]'^ and [Ru(CN)6]^ belong to redox couples with reduction potentials slightly 
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greater than 0.80 V, their reactions occur "uphill" in the thermodynamic sense. We easily 

solved this problem by employing an excess of each cyano complex over Zncyt^ Because, 

however, the 4- cyano complex has to compete with pc(I) for reduction of Zncyt"*", the 

reaction has to be faster than the reaction k\a. Fortunately, this was the case with the 

complexes [Mo(CN)8]'** and [RuCCI^e]"*". Because weaker reducing reagents would not 

necessarily meet this kinetic requirement, we could not go beyond the reduction potential of 

0.907 V. 

Considering all of the various requirements of the reducing agents and constraints 

imposed by the "clean" photochemical method that we used, we were fortunate to find a 

series of five similar reducing agents for a meaningful plot in Figure 3. But before we studied 

the reaction K (eq 1 and Scheme 1) we had to examine some side reactions. 

Side Reactions. When the reaction mixture contained [Fe(CN)6]"*' and [W(CN)8]'^, 

quenching of "Zncyt by pc(n), which we initially considered the only quencher, was faster 

than we expected on the basis of the rate constant kt. To study the reaction of interest, kx, we 

had to use relatively high concentrations of these 4- complexes, a condition that favored the 

side reaction in eq 7. The products of this side reaction, complexes [Fe(CN)6]^" and 

[W(CN)8]^', turned out also to quench ^Zncyt, as in eq 8. We prepared these two 3-

complexes, unexpected ingredients of the reaction mixtures and determined the equilibrium 

constants Ke (eq 7) and the rate constants jtf (eq 8). Both quenching reactions kt (eq 4) and 

itf (eq 8) are shown in Scheme 1. Because is six times greater in the case of [Fe(CN)6]''' 

and hundred times greater in case of [W(CN)8]"'' then ku even the low concentration of these 

3- complexes in the reaction mixture markedly enhanced the observed quenching of ^Zncyt. 
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Knowing both kf and values, we quantitatively accounted for this enhanced rate. Then we 

returned to our main purpose — study of the reaction kt and of the properties of Zncyt^ that 

govern its redox reactions. 

Formation and Lifetime of Zncyt* .̂ This cation radical is formed by oxidative 

* ' 

quenching of the triplet state, ^Zncyt, in reactions Arf and k^. To prolong the lifetime of 

Zncyt^ so we can study its reactivity (eq 1), we had to disfavor the back reaction, ky^. 

At first, we tried to keep the reaction mixture at pH 4.00 and ionic strength of 40 mM, 

at which plastocyanin is easily reduced (so that reaction kf would occur) but not reoxidized 

(so that reaction would be hampered).'^^ These experiments failed because of partial 

denaturation of pc(I) in the acidic solution. 

The reactants Zncyt"*" and pc(I) bear charges of +7 and -9 at pH 7.00. To disfavor the 

undesirable back-reaction, in Scheme 1, we added NaCl to the buffer at pH 7.00. By 

keeping the ionic strength at 1.00 M, we were able to prolong the lifetime of Zncyt"^ and 

make it accessible to the cyano complexes [M(CN)n]'^. 

Reduction of Zncyf  ̂by the Cyano Complexes [M(CN)n]^. The reaction in eq 1 is 

bimolecular at the ionic strength of 1.00 M. The linear plots of the pseudo-first order rate 

constants kz versus the concentration of the [M(CN)n]^ complexes gave the bimolecular rate 

constants k^. They and the AG° values, both in Table 1, are plotted in Figure 3. 

The leveling off, predicted by Marcus theory,could be due to two causes. First, the 

reaction could have became diffusion-limited (/(4a»A:difFin eq 9) and therefore independent 

of the driving force (AG°). Di this case, the diffusion limit would have to be approximately 

equal to, or a little greater than, 7-10^ NT's*', the value at which the plot in Figure 3 levels off. 
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Second, the reaction could be a case of true electron transfer (^act«^ff in eq 9) that became 

nearly activationless (AG ° in eq 11) with the [Fe(CN)6]'^ as the reductant. In this case the 

diffusion limit would be grater than 110® NT's '. 

To distinguish between these two cases we calculated the rate constant for diffusion 

since experimental determination is proven to be very difficult 37,46 jq calculate the rate 

constant for diffusion ^diff we applied the Smoluchowski equation^^ to Zncyt^ and 

[Fe(CN)6]'^. The product of their charges is (+7)x(-4)=-28, the rate constant for diffusion, 

^diff=l-810'° NT's '. This result generally agrees with the experimental value of 

4.210® M''s"', obtained for a somewhat similar pair of reactants, pc(II) with a net charge -8 

and [Ru(bpy)3]"'^, in a reaction with a high driving force (AG=1.2 eV) which is believed to be 

diffusion controlled.37 The calculated rate constant for diffusion from eqs 13-16 for pc(n) 

and [Ru(bpy)3]^'^ is 610' M"'s ^ Electrostatic effects are slight at ionic strength of 1.00 M, 

but a greater (negative) product of charges still corresponds to a three times faster diffusion 

which is in excellent agreement with our calculated value. We may tentatively conclude that 

diffusion limit lies well above the plateau in Figure 3, i.e., that the reaction has not became 

diffusion-controlled in the case of [Fe(CN)6]'*'. 

Because Smoluchowski equation tends to overestimate (while still realistically 

predicting its relative values for related systems),48 we further tested the nature of the 

reaction in eq 1. We know the experimental rate constant, itj =7.7-10® NT's"', for the reaction 

in eq 8, which involves essentially the same reactants except with different charges, whose 

product is (+6)x(-3)=-18. If the reaction were diffusion-controlled, than we could 

estimate the rate constant of interest, kt. The product of charges -28 would correspond to 
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r̂=l-210® M 's ', a value greater than . The experimental result, k^7-lO^ at the 

plateau, is much lower than the estimate and the known . Clearly, it is not onset of 

diffusion control that causes the plateau in Figure 3. We conclude that the reaction in eq 1 is 

a case of true electron transfer, which is approaching or it has reached the activationless 

regime. Fitting to Marcus equation is justified. 

Fitting to Marcus Equation and Reorganization Energy of Zncyt\ Because the 

five cyano complexes in eq 1 have similar structures and the same charge, the fitting in 

Figure 3 is meaningful. One of its results is the edge-to-edge distance between the heme and 

cyano complex is d=3.9±0.2 A. This result is in excellent agreement with the previously 

determined reaction distances for cytochrome c and anionic complexes,^^ but the negatively 

charged cyano complexes seem to react at the closer distance than the positively charged 

Ru^"^ complexes.-^ We conclude that the electron is transferred at the exposed-heme edge 

and that the significant localization of the unpaired spin on the meso-csihon atoms^®'^^ may 

render singly-occupied a.2a orbital accessible to the [M(CN)n]'** complex. Because of inherent 

errors associated with estimate of reaction distance^^ we sustain from further discussion. 

The other, and more interesting, result of our finding is the total reorganization 

energy, X=0.35±0.05 eV. As eq 24 shows, this quantity is approximately equal to the average 

reorganization energy of the two reactants.^^ Each of these energies is made up of inner-

sphere and outer-sphere terms. For the cyano complexes (eq 25) these separate terms have 

been estimated at 0.031 and 0.29 eV, respectively;^^ evidently, the 4- and 3- forms of the 

complexes have very similar structures (bond lengths), but are solvated to different extents. 
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[M(CN)J-

[M(CN)„f- (25) 

(24) 

Given p.- =0.32 eV, from eq 24, we estimate Xzncyt+=0-38 eV. This result can 

be compared with the reorganization energy of native cytochrome c (in ferric and ferrous 

oxidation states). Estimates of this quantity vary widely, between 0.5^^ and 1.2 eV.53 

Experimental study of the self-exchange redox reaction gave the result of 0.72 eV.^3 Recent 

theoretical studies yielded the values of 0.69,0.87,^5 and 0.68 eV.56 The last four results 

are fairly consistent, and we take the reorganization energy of native cytochrome c to be their 

average, or 0.74 eV. 

Oxidation and reduction of the iron protein occur predominantly at this transition 

metal, on which are largely localized the redox orbitals of the heme.^ Particularly affected is 

the Fe—S bond involving the axial ligand MetSO, which changes by 0.08 Because the 

protein surface is not significantly perturbed by the replacement of the metal ion,^ solvation, 

the chief outer-sphere factor, may be considered unchanged. Oxidation and reduction of the 

zinc protein occur at the porphyrin ring. Changes in the occupancy of the delocalized redox 

orbital are expected to have only slight effect on the porphyrin geometry. The zinc(II) ion 

seems to be five-coordinate, detached from Met80.20 Without this bond, MetSO probably is 

not affected by the oxidation state of the heme; yet another source of inner-sphere 

reorganization energy is absent in zinc cytochrome c. 

Confonnational and other structural differences between the iron(II) and iron(III) 

forms of cytochrome c are still being debated, 58-63 and their contributions to the 



www.manaraa.com

58 

reorganization energy are difficult to estimate.64 Without the firm knowledge about the 

native protein, we can only suppose that the decrease in total reorganization energy from 0.74 

to 0.38 eV is due mainly to a decrease in the internal structural rearrangement from native to 

zinc-substituted cytochrome c. 

Electron Self-Exchange between Zncyt and Zncyt^ The rate constant k\\ (eq 16) 

is 200 times greater than the corresponding rate constant for native cytochrome c, at the ionic 

strength of 1.00 M. We attribute this greater intrinsic reactivity to the greater accessibility of 

the redox orbital and lower reorganization energy, properties discussed in the preceding 

subsection. 

Conclusion 

The iron and zinc forms of the same protein, cytochrome c, differ markedly in their 

properties as redox agents. For meaningful fittings to Marcus theory, kinetic results obtained 

with heme proteins and their reconstituted forms should not be used in the same plot.5.65 

Ground-state and excited-state redox reactions should not be treated together, as they 

sometimes are in studies of this kind. 
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reaction in eq 1. This material is available free of charge via the Internet at 
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Table 1. Properties of the cyano complexes and other quantities dependent on these properties: reduction potential (E.^), 

driving force for the reaction in eq 1 (AG®), rate constant for the self-exchange reaction in eq 17 (^22). so-called work terms in the 

Marcus theory (wia, wai, W22, and W12), the factor/12, rate constant for the reaction in eq 8 (kf ), and rale constant for the reaction 

in eq 1 (ft,) 

complex (Fe(CN)6l''^ [W(CN)8]^"'- [OS(CN)6]'" lMo(CN)8l^"' |RU(CN)6]'''-

E V4 / V ,  V S  NHE 0.454 0.560 0.661 0.810 0.907 

AG® /eV 0.346 0.240 0.139 -0.010 -0.107 

ifc22/10^M's"' 1.12 9.84 8.90 16.4 5.50 

W12 / J mol ' -629 -563 -563 -563 -584 

W21 / J mol ' -404 -362 -362 -362 -375 

W22 / J mol ' 2625 2153 2153 2153 2299 

Wn 2.126 1.887 1.887 1.887 1.958 

fn 0.147 0.274 0.719 0.997 0.814 

k \ / 10^ M'S  ' 77(1) 115(5) - - -

S '  7(1) . 9(1) 1.42(5) 0.35(5) 0.0194(2) 

"froinref28 
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Figure Captions 

Figure 1. Transient absorbance changes in a solution containing 10 nM zinc 

cytochrome c and 30 cupriplastocyanin in a phosphate buffer at pH 7.00, ionic strength 

adjusted to 1.00 M with NaCl and 293 K. (a) The triplet state, ^Zncyt. (b) The cation radical, 

Zncyf", in the absence of cyano complexes (upper trace) and in the presence of 4.0 ^M 

[Os(CN)8]'*' complex. 

Figure 2. Rate constant ki for the disappearance of the cation radical Zncyt"^ as a 

function of the concentration of the [MCCN)!!]"*" complexes in a phosphate buffer at pH 7.00, 

ionic strength adjusted to 1.00 M with NaCl and 293 K. 

Figure 3. The curve is so-called Marcus plot for the reaction in eq 1, the best fit to 

eqs 9-12. The plotted quantities are in Table 1. The horizontal line is at k^f{, the result of the 

calculation according to eqs 13-15. 

Figure 4. Determination of the rate constant /tn. for the self-exchange reaction 

between Zncyt"^ and Zncyt (eq 16) based on the kinetics of the reaction in eq 1 involving five 

[M(CN)n]'^ complexes. The straight line is the best fit of these kinetic results to eqs 18-23. 
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CHAPTER 4. EFFECTS OF PH ON PROTEIN ASSOCIATION. THE CASE OF 

CYTOCHROME C AND PLASTOCYANIN. EXTENSION OF THE 

PROTON-LINKAGE MODEL AND EXPERIMENTAL VERIFICATION OF THE 

EXTENDED MODEL 

A paper to be submitted to Journal of the American Chemical Society 

Milan M. Cmogorac, G. Matthias Ullmann, and Nenad M. Kostic 

All kinetic experiments and fittings were done by primary author. Interpretation of results is 

the equal contribution from M. M. C. and G. M. U. 

Introduction 

Association of proteins with other biomolecules and with each other is an important 

step in various biological processes. Specific recognition between hormones and receptors, 

enzymes and inhibitors, antibodies and antigens, and electron carriers and redox enzymes 

depends on their selective association. Protonation state, and therefore charge, of titratable 

groups plays a decisive role in association. ̂  When this process involves transfer of H+ ions, 

it will depend on pH.23 

Studies of the effects of pH on protein-protein association are scarce. Among the few 

systems examined are cytochrome c and cytochrome £>5,^'^ proteinases and their inhibitors,^ 

and cytochrome c and cytochrome c peroxidase.^ The obvious method of studying these 

systems - determining and interpreting pH dependence of association constant - has not been 

systematically applied. 
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To develop this method, we chose a well-characterized system of two prototypical 

electron carriers, negatively-charged blue copper protein plastocyanin (pc) and 

positively-charged heme protein cytochrome c (cyt). Each of them contains many charged 

amino-acid residues suited for electrostatic interactions. The negative charge in high-plant 

plastocyanins is localized mostly in the so-called acidic patch, which consists of the lower 

cluster— residues Asp42, Glu43, and Glu44 — and the upper cluster— residues Glu59, 

Glu60, and Asp61. Some of the acidic residues seem to have unusually high pKa values,^ but 

consequences of this decreased acidity have not been investigated. The positive charge in 

mitochondrial cytochromes c is found in the basic patch surrounding the heme edge exposed 

at the protein surface. These patches in the two proteins have been implicated in their 

reactions with charged metal complexes,^"^^ other proteins,^and each other.^^'-^ The 

goal of this study is not to find out more about the protein pair in eq 1 and Figure 1, but to 

develop a method for studying noncovalent protein association exemplified by this pair. 

K 
cyt -i- pc - ^ cyt / pc (1) 

To determine the association constant, K, we take advantage of the redox activity of 

the proteins and measure the bimolecular rate constant for their electron-transfer reaction at 

different pH values. Kinetic studies with native proteins would require use of external redox 

agents, which would interact with the proteins and perturb their association. We avoid these 

complications by studying the photoinduced reaction in eq 2. Replacement of iron(II) by 

zinc(II) in the heme does not markedly affect the structure of cytochrome c and its 

association with other proteins.23-25 The oxidation of the triplet (excited) state of the zinc 
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derivative, ^Zncyt, by copper(II)plastocyanin, pc(II), has extensively been studied in our 

laboratory. 1.26-30 Kinetics is a "clean" method by which to dependence of K on pH. 

_ K ^ 
Zncyt + pc(II) Zncyt / pc(n) Zncyt / pc(I) (2) 

The so-called linkage model relates the chemical potential of external ligand and the 

free energy of its association with a receptor.^! In the proton-linkage model, th ligand is IT" 

ion. The number of KT ions released or taken up during a reaction (q) is related to the pH 

dependence of free energy of this reaction. If association constant K at one pH value and the 

number q are known, then K at another pH value can be calculated with eq 2. This model has 

been applied to protein-protein association,^'^'^^ protein unfolding,^^ and redox 

reactions.^^'^^The model should apply also to treat the release of different species, such as 

dioxygen, iron or calcium for instance. Its main shortcoming is that it treats the reacting 

system as a reservoir of ions and does not give information about individual reactants and 

the titratable groups involved in the transfer of ions. 

PH2 
logK(pH2) = logK(pHi)+ JqcfpH (3) 

pHi 

In this study, we extend the familiar proton-linkage model so it can give information 

about individual proteins and even about amino-acid residues involved in protein association. 

In particular, we extract firom the experimental results the composite pKa values, both in 

separate and in combined proteins, of groups of residues that change their protonation state 

upon protein association. We allow for interactions among the residues as theoretically 

calculate individual pKa values of all titratable residues in proteins. We study the effects of 
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several plastocyanin mutations on the pH dependence of association and explain these effects 

in terms of the extended model. Finally, we compare the calculated effects of the mutations 

on individual pKa values and their observed effects on protein association and identify some 

of the residues in plastocyanin are deprotonated as this protein associates with cytochrome c. 

Materials and Methods 

Chemicals. Distilled water was demineralized to resistivity greater 16 Mfl cm. 

Chromatography gels were purchased from Sigma Chemical Company; triethanolammonium 

chloride, from Aldrich Chemical Company; hydrogen fluoride, nitrogen, and ultrapure argon, 

from Air Products Co. All other chemicals were purchased from Fisher Chemical Company. 

Buffers. The buffers kept the ionic strength of 2.50 mM over the entire pH range, 

from 5.4 to 9.0.^^ This full range was covered with a buffer made by dissolving 2.50 nmiol 

(0.4641 g) of triethanolammonium chloride and 2.50 mmol (142.8 ^L) of glacial acetic acid 

in 1.000 L of water. The pH interval from 5.4 to 7.2 was covered also with a 2.50 mM 

solution of sodium cacodylate, and the pH interval from 6.6 to 9.0 was covered also with a 

2.50 mM solution of triethanolammonium chloride. The basic component of the first two 

buffers and the acidic component of the diird were created in situ by adding 0.100 M 

solutions of NaOH or HCl, respectively. These solutions of base and acid were used also to 

adjust the pH, which was measured with a Fisher Accumet 805 MP pH meter equipped with 

an Aldrich combination microelectrode. The values of association constant (K) in the 

overlapping region, from pH 6.6 to pH 7.2, were the same regardless of the buffer chosen. 

Proteins. Horse-heart cytochrome c was purchased from Sigma Chemical Co. The 

iron-free (so-called free-base) fonn was made, purified, and reconstituted with zinc(II) by a 
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modification's of the original procedure.^^'^S The product, zinc cytochrome c, was handled 

at 4 °C, in the dark. The criteria of purity were the absorbance ratios A423/A549 > 15.4 and 

A549/A585 < 2.0. The absorptivity at 423nm is 2.43* 10^ Nf'cm'^^^ Spinach plastocyanin and 

its three single mutants were prepared by overexpression in £. coli^^ with the vector 

pUGlOltr^^ and purified first with a DE32 column and then with a 26/10 Q Sepharose 

high-performance FPLC column from Pharmacia. The blue fraction was concentrated by 

dialysis against dry polyethyleneglycol (PEG 200(K)) and passed through a gel-filtration 

column Sephacryl S-100 HR. The amount of copper(n)-pIastocyanin was determined 

spectrophotometrically in the presence of K3[Fe(CN)6]. on the basis of the absorptivity at 

597 nm, which is 4700 M"' cm"'.39 jhg UV-vis spectra were recorded with a Perkin-Elmer 

Lambda 18 spectrophotometer. 

Flash Kinetic Spectrophotometry. The so-called laser flash photolysis on a 

microsecond time scale was done with a standard apparatus.^^ Argon for deaeration was first 

passed through water and then gently through the buffered solution of the proteins for 

30 minutes. The sample cuvette was kept at 293.0(2) K with the 30-L circulating bath Forma 

2067. Concentration of Zncyt was kept at 10.0 |AM, while concentration of pc(II) was varied 

from 2.0 to 30.0Initial volume of the protein solution was 1.0(X) mL. Upon each 

addition of a small portion (LOO to 4.00 jiL) of a 0.100 M solution of NaOH or HCl, the pH 

was measured with the freshly-calibrated pH meter, and the solution was deaerated for 10 

more minutes. Calibration of the pH meter was checked after the last adjustment of pH. 

Formation and decay of the triplet sate, ^Zncyt, was monitored by change in the absorbance 
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at 460 nin, AA460. For each concentration of pc(II) at a given pH value, four or more laser 

pulses were delivered, and kinetic traces were recorded. 

Regression Analysis of the Rate Constant kobs and Association Constant K. The 

kinetic traces were fitted to eq 4 by a least-squares nonlinear regression method, with the 

program SigmaPlot v4.01, obtained from SPSS Inc. We confirmedl^'20.26,27,41 that 

= a, exp(-A:pt)+^2 exp(-A:,b3t) 

the first-order rate constant does not depend on concentration of pc(n) and corresponds to 

unimolecular quenching of "Zncyt by pc(II), while the pseudo first-order rate constant k^s 

depends on the concentration of pc(II) and corresponds to bimolecular quenching of ^Zncyt 

by pc(II). Fitting of ^bs to eqs 5 and 6 gave the rate constants for association, ^on. and 

dissociation, ^off, of the Zncyt/pc(II) complex, as in our previous studies.^^,28,42 xhe typical 

fit is shown in Figure SI in the Supporting Information. In this study, for the first time, we 

analyze the association constant K, calculated from eq 7. The error margins for all reported 

values correspond to two standard deviations and the confidence limit greater than 95%. 

^on [pc(n)] 

^off+%+^on[pc(n)] 

[pc(n)]=[pc(n)]^ [Zncyt]„ +[pc(n)]^ +-^- [ [Zncyt], +[pc(n)]„ +-^1 -4[Zncyt]„[pc(n)l, I 
^on ,/ 

K = -^ (7) 
^off 

Calculations of pK, Values of Individual Residues. The crystal structures of horse 

cytochrome c (IHRC)43 and spinach plastocyanin (IAG6)44 were taken from the Protein 
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Data Bank. Since the latter structure is known only for the GlySAsp mutant, we changed 

Asp8 back to Gly with the program CHARMM.^^ we then created the mutants Asp42Asn, 

Glu59Gln, and Glu60Gln by the same method. In these slight mutations of the carboxylic 

acid to the corresponding amide the coordinates of nonhydrogen atoms in the side chains 

were kept fixed. The hydrogen atoms were added by the HBUDLD method,^^ tj^gir 

energy was minimized in 3000 steps of steepest descent in the CHARMM program. 

The pKi values of amino-acid residues were calculated by a standard method,^'^^ 

starting from pKa values of model compounds, N-formyl methylamide derivatives of amino 

acids.^^ The partial charges were taken from AMBER94^^ force field for atoms in side 

chains and from a quantum-mechanical calculation^® for the blue-copper site. If all the 

residues in the protein were electroneutral, a titratable side chain would have the so-called 

intrinsic pKa value. The intrinsic pKa values and the interaction energies between titratable 

groups were obtained by the MEAD program.^l solving the linearized Poisson-Boltzmann 

equation on a grid in two focusing steps.^-'^^ xhe dielectric constants of the protein interior 

and of water were set to 4.0 and 80.0, respectively.^^ The ionic strength was set to 2.50 mM. 

The solvent-accessible and the ion-exclusion layers were probed with a sphere having the 

radius of 1.4 A and 2.0 A, respectively. The grid was centered on the geometric center of the 

model compound or the protein in the first step and on the titratable group in the second. The 

first grid had a spacing of 1.0 A; the second, of 0.25 A. The two grids had the same length in 

all three dimensions: 61 A for die calculations of the model compounds and 81 A for the 

calculations of the proteins. Calculated AG" for transferring the titratable group from aqueous 

solution to the protein in which all other residues are electroneutral was added to the pKa 
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value of the appropriate model compound. One of us (GM.U.) wrote a program that uses the 

output of the program MEAD and determines the protonation probabilities of all titratable 

residues in a protein on the basis of free energies of protonation calculated by a hybrid of a 

statistical-mechanical method and the Tanford-Roxby method.^^ The program is available at 

http://www.scripps.edu/--ullmann/program.html. 

The pKa value of an isolated titratable side chain is the pH value at which the 

protonation probability, (x), is 0.50. Because an isolated side chain obeys the 

Henderson-Hasselbalch equation, pKa=pKi4. But a protein exists in multiple protonation 

states, and the pKv4 value of a side chain no longer reflects the probability of its protonation.^ 

Consequently, the pKj value depends on pH, as Figure S2 in Supporting Information shows. 

Fortunately, this dependence is very small over the pH range of our experiments.^^ For the 

sake of accuracy, (x) were calculated over the entire range 5.4<pH<9.0 in steps of 0.05 pH 

units, and at each step the pKa result was obtained with eq 8. An average of all the pKa results 

corresponding to (x>>0.0010 for a given titratable side chain is the pKa value of this side 

chain. 

pKa = pH + log-^ (8) 
l-<x> 

Extended Proton-Linkage Model. We extend the original linkage model^^ to 

extract from it not only the number of ions released or taken up upon association, but also 

the pKa values of the groups of residues involved in association. When rtik amino acid 

residues each lose a IT ion in the same pH interval, we designate them isoacidic residues. 

The width of the pH interval and other criteria for residues to be considered isoacidic will be 

http://www.scripps.edu/--ullmann/program.html
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analyzed in tiie Discussion section. The system (protein pair) has M groups of isoacidic 

residues, which are indexed with k. Each group acts collectively and has one composite pKa 

value in the separate (pK®^) and another composite pKa value in the combined (pK^^) 

proteins. 

ions are bound, all residues in all isoacidic groups are protonated, and only one protonation 

state is possible. We take it as the reference protonation state of the protein pair, for which 

the association constant is KQ. The other protonation states are defined with respect to this 

one. 
When i of the M isoacidic groups are deprotonated, the number of possible 

protonation states is p„ given by eq 9. The protonation states with the same number of 

deproionated groups are indexed with j, which runs from I to p,. Each protonation state of the 

protein pair is designated by two indexes, i and j. Going from the reference (fully-protonated) 

Each group of isoacidic residues can lose hydrogen ions. When a total of ^ mj^ 
k=l 

J M ) _A/!_ 
~ \ M - i )  { M  (9) 

M 

(10) 
k=l 

M .  

(11) 
k=l 

M . 

(12) 
/fe=l 
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state to the ij protonation state, the protein pair loses aj hydrogen ions, the number given by 

eq 10. The component xjf^ of a protonation-state vector shows whether the /fc-th group of M 

isoacidic groups is protonated (0) or not (1). The constant L/, defined for separate 

(superscript s) proteins in eq 11 and for combined (superscript c) proteins in eq 12, is the 

equilibrium constant between the reference state and the ij state (for a detailed explanation, 

see Supporting Information). These equilibrium constants can be related to the pK®^ and 

pKg^ values, as the right-hand sides of eqs 11 and 12 show. 

M Pi .  . 

SE [H-] Lf 

K = (13) 
M Pi. .  ''i .  

J=0;=1 

Protein association (within the system) can be accompanied by release and uptake of 

IT ions (by the system). Therefore the association constant K depends on the concentration 

of ions. We experimentally determine this dependence and fit it to eqs 9-13. We estimated 

the initial values of the fitting parameters in eqs 11 and 12 from the 

experimentally-determined dependence of K on pH. According to eq 3, the slope of the plot 

of log K versus pH is q, defined in eq 14. Positive and negative values of q correspond to 

release and uptake, respectively, of ions upon protein association. We round to integers 

the maxima and minima of q and use their absolute values as initial values of mt in the 

fittings to eqs 9-13. bi the program SigmaPlot, ntk values had to be treated as constants and 

changed manually. Fittings of the experimental 
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q = (14) 
rfpH 

results to eqs 9-13 yielded BCo, three pK|^ values for three groups of isoacidic residues in 

separate (free) proteins, and three pK^^ values for these groups in combined (associated) 

proteins. Fidelity of the fit to the experimental results was judged by the correlation 

coefficients (R"). We considered the fitting successful if the fitted line passed through all 19 

experimentally-determined points (within the error bars); all such fittings gave R">0.990. 

The fitted values of ntk, pK|^, pK^^ are reasonable, clearly related to the known properties 

of the proteins under study. That reasonableness, not merely the high statistic quality of the 

fits, reassured us about the soundness of these results. 

A detailed derivation of the extended proton-linkage model and an example of its 

application to our experimental results are given in the Supporting Information. 

Results 

Oxidative Quenching of ^Zncyt by pc(II). In the absence of copper(II)plastocyanin, 

the excited state ""Zncyt decays with the rate constant of 80±10 sIn the presence of 

copper(II)plastocyanin, this excited state is oxidatively quenched. As concentration of 

copper(II)plastocyanin increases the rate constant increases as well, as shown in Figure SI in 

the Supporting Information. These findings confirm the previous detailed studies in this 

laboratory and were analyzed as before.20,26,41 jn this study, we are interested in the 

bimolecular reaction between the two proteins, whose rate constant is and whose 

amplitude is az-
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When the concentration of copper(II)plastocyanin is kept constant and pH is raised 

from 5.4 to 9.0, the rate constant kobs increases, reaches a maximum, and then decreases, as 

seen in Figure S3 in Supporting Information. Simultaneously, the amplitude 02 decreases, 

reaches a minimum, and increases, as seen in Figure S4 in the Supporting Information. 

Dependence of the Association Constant K on pH. Kinetics of electron transfer is 

not a goal of this study but a reliable means of investigating the association of plastocyanin 

and cytochrome c. We experimentally determined K at nineteen pH values in the interval 5.4 

to 9.0 and did so for four protein pairs, those that cytochrome c forms with the wild-type 

plastocyanin and its three mutants. Figures 2a—d. When pH is raised from 5.4 to 9.0, 

association constant K increases, reaches a maximum, and then decreases. The wild-type 

plastocyanin and all three mutants show the same qualitative trend, but quantitative 

differences among them are important. 

The Fitted nik Values. All four plots in Figure 3 were successfully fitted in the same 

way. Reasonable initial values of nik were available from experimental data - absolute values 

of the q extrema, as explained above. For example, the initial nik values for fitting of results 

in Figure 3a were mi=2, m2=l, and m3=3. We kept changing the values until an excellent fit 

was achieved, with correlation coefficient R">0.990. But we did not stop there. To make sure 

that the fitting was not accidental, we changed the mt values trying to spoil the fit. Some of 

these attempts are shown in Figure S5 in Supporting Information. If a set of nik values was 

unsatisfactory, no adjustment of the six pK, values could produce a good fit. Of the 

approximately 300 attempted fittings, only eight were satisfactory. These eight sets of fitted 

parameters are the eight columns in Table 1, two columns each for wild-type plastocyanin 

and its three mutants; each of them interacts with cytochrome c. 



www.manaraa.com

82 

The Fitted Composite pK, Values. Criterion for Isoacidic Residues. The 

estimated error in the pKa values is ±0.10 pH units. Changes of this magnitude in the pKa 

values were more than sufficient to divert the fitted line from the error bars of some of the 

experimentally-determined points, as seen in Figures S6-S8 in Supporting Information. 

Given the precision of the experimental results, the individual pKa values of the residues 

belonging to the same isoacidic group differ by ±0.30 pH units or less. We determined this 

interval in many attempts to spoil the fittings by imposing spreads of various magnitude on 

these individual pKa values. When the spread was within ±0.30 pH units, the fitted lines 

passed through the error bars of all experimentally-determined points for each of the four 

protein pairs. 

Because association of cyt with all four forms of pc obeys the same equations, 

because excellent fits were nearly unique, and because the fitted parameters were quite 

reasonable, we accepted the success in fitting as verification of the extended proton-linkage 

model. 

Calculated Individual pK, values. We used an advanced electrostatic model to 

calculate the pKa values of all titratable residues in all four forms of plastocyanin and 

cytochrome c; see Tables SI and 82 in Supporting Information. The values for the residues in 

the acidic patch of plastocyanin, which will be discussed, are highlighted in Table 2. 

Discussion 

Protein Association. Protein association involves hydrophobic interactions, which do 

not depend on pH, and electrostatic (ionic and polar) interactions, which do.^^ By changing 
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the pH value, one can adjust the protonation state of titratable side chains and study the 

dependence of the association constant, K, on this state. 

Association constant can be determined by NMR spectroscopy or calorimetry, but 

there are many pitfalls in these experiments. Exchange of ions, nonspecific perturbation 

of NMR resonances, interactions of the proteins with the buffer as well as with each other, 

and the deviations from ideal behavior when the protein concentrations are relatively high— 

all of these factors complicate the experiments.^^ To complicate matters further, these 

interactions and deviations may also depend on pH. Even if the technical problems are 

solved, the final results may be difficult to interpret. If the protein association is a step in a 

chemical reaction, especially if multiple protein complexes are possible, it may not be clear 

whether the constant K corresponds to the reactive complex. 

This fundamental ambiguity is avoided if the constant K is determined by studying 

the kinetics of the reaction in which the association of interest is a step. Kinetic studies 

require relatively low concentrations of proteins and can give precise values of the 

association constant. 

Because deprotonation of the carboxyl group and protonation of the amino group are 

endoergic processes, these electroneutral groups are unfavorable as precursors of 

salt-bridges. The salt-bridges are preferentially formed from the preexisting carboxylate 

anions and anmionium cations. 

The Protein Pair. To study in detail the effect of pH on association between proteins, 

we chose a pair of stable and well-characterized metalloproteins having complementary 

electrostatic properties. The prototypical blue copper protein plastocyanin, designated pc, has 

an anionic (acidic) patch consisting of two clusters; Asp42, Glu43, and Glu44 make up the 
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so-called upper cluster, while Glu59, Glu60, and Asp61 make up the so-called lower 

cluster. '58-60 xhe prototypical heme protein cytochrome c, designated cyt, has a cationic 

(basic) patch consisting mostly of Lys residues.^ Chemical modification of cyt,^ 

saturation idnetics in the electron-transfer reaction, NMR spectroscopy,65 

site-directed mutations in pc,28,30 and computational simulation of docking66,67 ajj agree 

that the acidic patch in pc abuts the basic patch of cyt upon association, and it is not a 

purpose of this study to verify this fact. Marked dependence of association constant on ionic 

strength indicates large contribution of polar interactions to this association.^1'68 Because 

these two proteins undergo electron-transfer reactions, their association constant, K, is 

precisely determined by kinetic experiments. 

Dependence of Association Constant, K, on pH. We will always consider the 

effects of the increasing pH value. As Figures 2a—d show, affinity of cytochrome c for each 

of the four forms of plastocyanin follows the same general trend— growth from 5.4 to ca. 

6.5, then decline to 9.0. We will first explain this general increase and decrease in K, and will 

later analyze the inflections in the plots. 

The initial increase can be due to decreasing repulsion or increasing attraction 

between the two proteins as pH is raised. The first explanation can be true if cationic side 

chains existed on the interacting surfaces of both proteins at pH 5.4, so that their 

deprotonation abolishes the repulsion. Since, however, the acidic patch in plastocyanin lacks 

cationic side chains, we reject the hypothesis of decreasing repulsion. Deprotonation of 

carboxyl groups in the acidic patch in plastocyanin favors salt-bridges with the basic patch in 

cytochrome c, attraction increases, and the K reaches its maximum around pH 6.5. 
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The decrease in K as the pH is raised further can, similarly, be due to increasing 

repulsion or decreasing attraction between the proteins. The first hypothesis requires that 

interacting surfaces in both proteins contain acidic side chains, whose deprotonation would 

cause repulsion between the resulting carboxylate anions. Because, however, the basic patch 

in cytochrome c lacks acidic side chains, we reject this hypothesis of increasing repulsion. 

Deprotonation of cationic residues in this basic patch disfavors salt-bridges with the acidic 

patch in plastocyanin, and the K decreases. To summarize, as pH is raised, first the acidic 

residues in plastocyanin and then the basic residues in cytochrome c loose ions to the 

solvent. 

To test this reasonable explanation and to explain quantitatively the dependence of K 

on pH, we needed a suitable theoretical model for this dependence. Only one such model 

seems to be commonly used now in chemistry and biochemistry. 

The Proton Linkage Model. This established modeP^ has been used to study 

protein-protein association^'^'32 and redox potentials of proteins.^^'^^ In principle, the 

model applies to dependence of binding affinity on any ligand. When the variable is pH, the 

ligand is the IT ion. The model (eq 3) correlates the effect of pH on association to the 

number of ions (q) transferred between the system and the solvent. The transfer can be 

release or uptake by the system; the system is a pair of proteins, cytochrome c and 

plastocyanin considered together; and the solvent is the buffer. As Figure 1 shows, the 

system can exist in two states: the proteins are either separate or combined. When the system 

changes state, H** ions may be transferred between it and the buffer. If a titratable side chain 

is affected by the change of state of the system, this side chain will have different individual 

pKa values in the two states. Consequently, the change of state may cause (de)protonation of 
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this side chain. A swap of IT ions within the system (i.e., between the proteins) cannot be 

detected. We are interested in those cases in which protein association triggers uptake or 

release of iT" ions by the protein pair (viewed as a whole). If this H*" transfer occurs in the 

experimental pH range, the transfer can be detected in the plot of K vs. pH. 

The proton-linkage model treats the system as a reservoir of PT ions and yields only 

the number of these ions involved in a pH-dependent process. Because the model does not 

recognize the specific sources of these ions, it can not give detailed information about the 

process. If the pKa values of these sources could be determined, the model would become a 

useful tool for the study of chemical and biochemical reaction mechanisms. We extended the 

model and estimated the composite pKa values of groups of amino-acid residues involved in 

the protein association. 

Extended Proton-Linkage Model. In principle, our analysis holds equally for 

increasing for increasing or decreasing pH, association or dissociation of the protein pair, and 

uptake or release of H+ ions by the pair. By convention, however, we consider the changes in 

the direction of increasing pH, where protein association may trigger release of ions to the 

buffer. 

We introduce the concept of isoacidic residues, those that lose a If" ion each in the 

same pH interval. This concept and definition apply also to residues such as lysine that are 

normally termed as basic. Because the protonated form of lysine is acidic and looses a ion 

as pH is raised. Individual pKa values of isoacidic residues are clustered within ±0.30 pH 

units, as explained above. The width of this interval depends on the specific system under 

study and precision of the experimental measurements and results. A combination of these 

values is a composite pKa value for the isoacidic group of residues. 
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Because the system has two states (separate and combined proteins), each isoacidic 

group has two pKa values designated pK| and pK^, respectively. If an isoacidic group is 

affected by change in state (i.e. protein association), pK| and pK^ will differ. If the transfer 

of IT ions between an isoacidic group and the buffer occurs in the pH range covered in the 

experiments, this isoacidic group can be detected. 

Scheme 1 shows the effects of protein association and of pH on a carboxyl side chain, 

representing a group of isoacidic aspartic or glutamic residues. This conceptual Scheme 

applies regardless of the state of the basic residues; in this case they happen to be protonated, 

as cations. Association and dissociation of the proteins are represented by horizontal arrows; 

release or uptake of IT" ions, by vertical arrows; the two processes combined, by the 

downward diagonal arrow. When pH<pKa the neutral isoacidic group predominates in both 

separate and combined proteins. Upon association (the upper horizontal), the system does not 

release a KT ion (to the buffer). A salt-bridge cannot form, but a hydrogen bond (dotted line 

in lightface) may form. At pK^ <pH<pK|, the side chain is predominantly neutral when the 

proteins are separate but predominantly protonated when they are combined. Association (the 

diagonal) triggers release of a ion, which can be detected. A salt-bridge (dotted line in 

boldface) can form. At pH>pK|, the carboxylate anion predominates in both separate and 

combined proteins. Upon association (the lower horizontal) the system does not release a 

ion, and a salt-bridge can form. 

Scheme 2 shows the effects of association and of pH change on an ammonium side 

chain, representing a group of isoacidic lysine residues. The acidic residues in plastocyanin 

happen to be deprotonated. As before, association and IT* loss are represented by rightward 
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and downward arrows, respectively; combination of association and ET uptake is represented 

by diagonal arrow. As before, the (de)protonation state, and therefore the charge, of the 

isoacidic group depends on the relation among the pH, pK|, and pK^ values. The main 

consequence of these relations is the possibility for forming salt-bridges or merely hydrogen 

bonds. 

When the oppositely-charged interaction surfaces in separate proteins are hydrophilic, 

as in the system understudy, upon association acidic groups tent to lose ions, while basic 

groups tend to gain IT ions. For this reason, the diagonal arrows in Schemes 1 and 2 are 

placed as they are. The arrows along the other diagonal are omitted for the sake of clarity, 

although the extended model is equally applicable to the processes shown and not shown. 

Extended proton-linkage model allows quantitative treatment of the release or uptake 

of the BT ions by the system triggered by the change of the system state. Given the large 

number of titratable side chains in proteins, their individual pKa values are intractable. An 

attempt to consider individual side chains would require too many parameters, with which 

fittings of experimental results would be meaningless. Therefore we recognize the existence 

of isoacidic residues, which act as a group. Because composite pKa values of these groups are 

relatively few, fittings with them are possible and meaningful. 

Application of the Extended Proton-Linkage Model to Wild-Type Plastocyanin 

and Cytochrome c. The Number of Isoacidic Residues. The results are shown in Figure 

3a. The general trend was explained above; as pH is raised, an increase in K due to the acidic 

residues in plastocyanin, followed by a decrease due to the so-called basic (actually acidic 

when protonated) residues in cytochrome c. Now we will analyze subtler, but more revealing, 

inflection points in the curve. There are three of them, corresponding to three groups of 
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isoacidic residues. The first one is in plastocyanin, the next two in cytochrome c. Each 

isoacidic group contains mk residues and has a pK| value in the separate and pK^ in the 

combined proteins. As explained in Materials and Methods, the fitting yields ten parameters; 

three sets of nik, pK |, pK^ values and one Ko value. 

Fitting of Figure 3a to eqs 9-13 is very sensitive to the choice of mt values and 

sensitive to the choice of the other parameters. If the triplet was wrong, variations in other 

parameters could never result in a good fit. 

We often tested fits by deliberately spoiling them— changing m\, mz, or ms a little to 

see if the fit will markedly worsen. We rejected seemingly good fits that failed to be spoiled 

in this way. A few of these tests are shown in Figure S5 in Supporting Information. In the 

end, out of nearly 100 attempts at fitting with different mt triplets, only two met all the 

criteria and are given in the first two columns in Table 1. 

The mk values show that association involves a group of three isoacidic residues in 

wild-type plastocyanin and also one group of two or three and another group of three 

isoacidic residues in cytochrome c. The apparent mismatch between the salt-bridge parmers, 

three in plastocyanin versus five or six in cytochrome c is not worrisome. The other residues 

in plastocyanin that form salt-bridges have typical, relatively low, pKa values and are 

undetectable in the pH range covered. 

A direct titration of cytochrome c showed that this protein loses ca. five ions in 

this pH range.69 Indeed, our fitting gave the sum mz+ms of five or six. Evidently, the 

extended proton-linkage model gives realistic numbers of isoacidic residues. 
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Application of the Extended Proton-Linkage Model to Wild-Type Plastocyanin 

and Cytochrome c. The pKa Values. A kinetic study of electron-transfer reactions of 

plastocyanin suggested that some residues in this protein have pKa values around 6.^ fodeed, 

our fittings gave pK|j of 6.4 and 6.3 for the first isoacidic group in separated proteins. 

To test the sensitivity of the fits to composite pKa values of isoacidic groups, we 

systematically changed these values, one at the time, in the first two columns in Table 1. 

Some of these attempts are shown in Figures S6-S8 in the Supporting Information. 

Deviations from the best values by as little as ±0.10 clearly spoil the fits. We conclude that 

the error margin for the composite pKa values in this study is ±0.10 pH units. It was achieved 

with 19 values of K covering a range of 3.6 pH units, shown in Figure 3a. The precision of 

fitting depends on the soundness of the theoretical model and on the number and quality of 

the experimental results. 

The two successful fittings in Table 1 are quite consistent; only the pK|, values in 

the two columns differ by more than 0.10 pH units. The following interpretation is consistent 

with both fittings. That pK|j > pK^^, whereas pK^^ < pK^, and pK^^ < pK^j means that 

upon association carboxylate anions in plastocyanin and ammonium (lysine) cations in 

cytochrome c are favored. This findings is symptomatic of salt-bridges in a polar 

environment. 

The possibility of extracting composite pK, values of groups of residues and 

analyzing their shifts upon protein association is the chief benefit of our extension of the 

standard proton-linkage model. 



www.manaraa.com

91 

Application of Extended Proton-Linkage Model to Plastocyanin Mutants and 

Cytochrome c. In each of the three mutants one carboxyl group in the acidic patch is 

changed to the corresponding carboxamide. Asp to Asn or Glu to Gin. This noninvasive^^,!? 

change alters electrostatic but not steric properties of the side chain^^ and can show how 

association with cytochrome c will change when a residue that can form salt-bridge is 

noninvasively replaced by the one that cannot. We will pay attention to the changes in mi, 

pK|j, and pK^^ parameters upon each mutation in plastocyanin. 

Out of some 200 attempts at fitting, each of the plots in Figures 2b—d was accurately 

reproduced (correlation coefficients R">0.990) with only two sets of parameters. The 

consistency of the two fits can be assessed by comparing columns in each pair in Table I. For 

Asp42Asn, ms differs by one, and the pKa values agree. For Glu59Gln, mz differs by one, and 

only pK| J values differ slightly. For Glu60Gln, ms differs by one, and two pKj values differ 

by more than 0.3 pH units. Although these differences are relatively small, we interpret the 

parameters cautiously. 

Plastocyanin Residues Involved in Association with Cytochrome c. our 

experiments we could not go bellow pH 5.4 and observe the pKa values of ordinary acidic 

residues because these conditions would damage plastocyanin.?^ The residues belonging to 

the isoacidic set mi have unusually high pKa values, a symptom of their mutual interactions 

within plastocyanin. Deprotonation of one carboxyl group makes the deprotonation of 

another more difficult, and their pK, values increase. We do not use the pKa values of 

individual residues in Table 2 to interpret the inflection points in Figures 2a—d because 

individual residues are subsumed in isoacidic groups, with their composite pK. values. The 
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calculated values in Table 2 are, however, useful for detection and qualitative assessment of 

effects of mutations in plastocyanin. Because the theoretical calculations allowed interactions 

among the residues, the individual pKa values can show indirect effects of mutation of a 

given residue on other residues in plastocyanin. In the following discussions we use results 

from both Tables 1 and 2. 

Effects of the Asp42Asn Mutation. Residue 42 belongs to the lower cluster in the 

acidic patch. Because its pK, in all the plastocyanin forms is 4.3 or 4.4, well outside the pH 

range covered, it is unlikely to contribute to an isoacidic group whose composite pK| is 6.1. 

We conclude that Asp42 cannot directly contribute to the dependence in Figure 3a. Indeed, 

the m\ value remains unchanged upon mutation of Asp42, evidence that this residue is not 

deprotonated upon association with cytochrome c. But this residue can contribute to the pH 

dependence of K indirectly, through its interactions with other residues. As Table 2 shows, 

upon mutation Asp42Asn individual pK, values of the neighboring residues Glu43 and 

Asp44 are lowered by 0.4 and 0.8 units, respectively. This change probably contributes to the 

slight lowering, by 0.2 or 0.3 units (see Table 1), of the composite pK|j value upon 

mutation. 

Effects of the Glu59Gln Mutation. Residue Glu59 belongs to the upper acidic cluster. 

With the individual pKa value of 5.5, it likely contributes to the isoacidic group whose 

composite pK|j is ca. 5.6 or 5.7. As Table 1 shows, m\ is 2 for this mutant (and 3 for the 

wild-type plastocyanin.) Evidently, when ionization of Glu59 is prevented (by mutation), the 

number of ionisable residues in plastocyanin is lowered by one. It is tempting to conclude, 

that Glu59 is one of the three isoacidic residues in wild-type plastocyanin. But mutation of 
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Glu59 could conceivably act indirecdy, by lowering the pKa value of a proximate residue so 

that this other residue stays deprotonated over the entire pH range studied and can no longer 

be seen in Figure 5. As Table 2 shows, mutation Glu59Gln lowers the individual calculated 

pKa values of Glu60 and Asp61 relatively little, by 0.6 and 0.3 units, respectively. The large 

indirect effect is unlikely. We return to the straightforward conclusion that Glu59 itself is a 

member of the isoacidic group in plastocyanin. 

To test this conclusion, we mutated the adjacent residue, Glu60, in an attempt to 

affect Glu59 indirectly. If our reasoning is correct, ionization of Glu59 in plastocyanin upon 

association with cytochrome c could be thwarted by lowering the individual pKj value of 

Glu59. 

Effects of the Glu60Gln Mutation. Calculated pKa of Glu60 is 4.3, probably too low 

to make this residue a member of the first isoacidic group, which is ionized in the 

experimental pH range. Although our experiments can not detect ionization of Glu60, if it 

occurs upon association, our experiments in combination with theoretical calculations of pKa 

values can reveal effects of Glu60 on other acidic residues in plastocyanin. As Table 2 

shows, mutation to Gin lowers the individual pKj of Glu59 by 0.6 and of Asp61 by 1.2 units. 

The values of 4.9 and 5.2 are probably low enough to preclude detectable ionization of Glu59 

and Asp61 (as members of the isoacidic group) in the experimental pH range, which starts at 

pH5.4. 

Indeed, the mi value of 1 or 2 (in the last two columns in Table 1) is smaller than the 

mi value of 3 (in the first two columns). Upon mutation Glu60Gki, one or two acidic residues 

in plastocyanin, likely residues other than Glu60, cease contributing to the release of fiT ions 



www.manaraa.com

94 

upon association with cytochrome c in the pH range covered. According to our evidence, one 

of these residues likely is Asp61; the other, if there are two of them, probably is Glu59. 

Implications for tiie PhotosynUietic Function of Plastocyanin. This protein carries 

electrons from cytochrome/ to photosystem I in the tylakoid of the chloroplasts, which has 

pH<5.0.^1 Our experimental results (Table 1) and theoretical calculations (Table 2) 

consistently show that some of the acidic side chains in plastocyanin retain the H** ions, and 

remain electroneutral, even at pH>5.0, under physiological conditions. To assume that acidic 

side chains are deprotonated and therefore anionic, as is routinely done when considering 

electrostatic properties of proteins, would cause mistakes in the smdy of interaction of 

plastocyanin with its physiological partners. 

Conclusions 

We extended the familiar proton-Unkage model so that it can reveal some molecular 

details about pH-dependent phenomena in chemical and biochemical systems. The extended 

model, in combination with theoretical calculations of pKa values of individual titratable side 

chains, can be used to determine composite pK, values of those side chains that act 

concertedly or approximately so in exchanging ions with the solvent upon some change of 

the system. 

This, the first application of the extended proton-linkage model, concems the pH 

dependence of the association between two proteins. Intricate dependence of the association 

constant on pH and effects on this dependence of several site-directed mutations were 

consistently explained and fitted with nearly-unique sets of reasonable parameters in each 
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case. Interpretation of these parameters revealed general and specific features of the 

protein-protein interaction. 

The extended proton-linkage model is a general one. Besides protein association, it is 

applicable to various pH-dependent reactions and interactions, such as binding of substrates 

and cofactors to enzymes, of proteins to nucleic acids and membranes, of anitgens to 

antibodies, and of metal ions to biomolecules. Encouraged by the outcome of this study, we 

will explore some of these new applications of the extended proton-linkage model. 
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Table 1. Parameters with which the pH Dependence of Association Constant K in 

Figures 2a—d were Fitted to Eqs 9-13. Association of Cytochrome c with Each of the Four 

Forms of Plastocyanin was Successfully Fitted with Two Sets of Parameters: mt is the 

Number of Isoacidic Residues in a Group; pK^ and pKg are Composite pKa Values for 

Isoacidic Residues in, Respectively, Separate and Combined (Associated) Proteins; and Ko is 

the Association Constant for Fully-Protonated Proteins. Subscript 1 Designates Plastocyanin; 

Subscripts 2 and 3, Cytochrome c 

pc form 

parameter® wild type" Asp42Asn'' Glu59Gln'= Glu60Gln'^ 

mi 3 3 3 3 2 2 1 2 

mi 2 3 2 2 1 2 1 1 

ms 3 3 2 3 1 1 1 1 

6.4 6.3 6.1 6.1 5.7 5.6 6.3 6.0 

PKI, 6.3 6.6 6.0 6.0 6.4 6.6 6.3 6.8 

PKI3 7.9 7.8 8.1 8.1 8.6 8.3 8.2 8.1 

pKa, 5.8 5.9 5.9 5.9 5.2 5.1 5.0 5.7 

PK^, 7.0 6.9 6.4 6.4 6.6 6.7 7.0 7.0 

PK=3 8.3 8.3 8.2 8.1 8.9 8.7 8.6 8.4 

10"^ Ko 8(1) 7(1) 4.7(6) 4.7(6) 1.3(6) 0.9(4) 0.9(3) 2.6(3) 

® Fittings shown in Figure 3 a. 

'' Fittings shown in Figure 3b. 

Fittings shown in Figure 3c. 

Fittings shown in Figure 3d. 

® Margins of error for the pKa values is ±0.10. 
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Table 2. Calculated pKa values of Amino-Acid Residues in the Acidic Patch of 

Plastocyanin, at Ionic Sffength of 2.50 mM and 293 K. 

pc form 

residue wild type Asp42Asn Glu59Gln Glu60Gln 

Asp42 4.4 
a 

4.3 4.3 

Glu43 6.2 5.8 6.0 6.1 

Asp44 6.2 5.4 6.1 6.1 

Giu59 5.5 5.4 
a 

4.9 

Glu60 4.3 4.3 3.7 
a 

Asp61 6.3 6.3 6.0 5.2 

^ Residue absent in the mutant 
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Scheme 1. The effect of pH (vertical arrows) and of association (horizontal arrows) 

on acidic residues in plastocyanin that is separate from and combined with cytochrome c. 

One carboxyl side chain represents a group of several isoacidic residues. Protein association 

in a certain pH interval triggers release of IT ions to the buffer. Boldface dots represent a 

salt-bridge; lightface dots, a hydrogen bond. 

•COOH-—H-,?i  

separate combined 

-H* 

pKj 

00 :;^=pH > pKJ 

separate combined 
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Scheme 2. The effect of pH (vertical arrows) and of association (horizontal arrows) 

on basic residues in cytochrome c that is separate from and combined with plastocyanin. One 

ammonium side chain represents a group of several isoacidic residues. Protein association in 

a cenain pH interval triggers uptake of ions to the buffer. Boldface dots represent a 

salt-bridge; lightface dots, a hydrogen bond. 

^c^j—coo' 

separate 

i  

^c^coo" 

-H+ 

a  pK' 

pH < pK 

combined 

—COO pH > pK 

cyt cyt 

separate combined 
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Figure Captions 

Figure 1. Reversible, noncovalent association between the blue copper protein 
plastocyanin (pc) and the heme protein cytochrome c (cyt). The two metal atoms are shown 
as spheres, while the porphyrin ring and the four ligands to the copper atom are shown as 
wire-frame models. TTie acidic residues Asp42, Glu43, Asp44, Glu59, GIu60, and Asp61 in 
plastocyanin, and the basic residues Lysl3, Lys25, Lys27, and Lys86 in cytochrome c are 
highlighted as ball-and-stick models. The protein structures were drawn with the program 

MolScript v2.1.--

Figure 2. Dependence on pH of the number of IT ions (q) released to the buffer by 
the protein pair shown in Figure 1 upon their association at ionic strength of 2.50 mM and 
293 K, calculated with eq 14. The error bars include two standard deviations. The line is 
calculated with eq 14 on the basis of the fitted line from Figure 3a. 

Figure 3. Dependence on pH of association constant K for association of 
cytochrome c with (a) wild-type plastocyanin and the following three mutants: (b) 
Asp42Asn, (c) Glu59Gln, and (d) Glu6()Gln at ionic strength of 2.50 mM and 293 K. Error 
bars for the experimental results include two standard deviations. The two nearly overlapping 
lines in each case are fittings to eqs 9-13. The two sets of fitted parameters are given paired 
columns in Table 1. 



www.manaraa.com

105 

pc / cyt 

combined  s e p a r a t e  

Figure I 



www.manaraa.com

106 

n J 

1 

O" 0 

-1 

.9 

-3 

6 8 9 7 

pH 

Figure 2 



www.manaraa.com

107 

J. 1 J.  

3x10* 

1 1 

1 

5 6 7 8 9 
PH 

Figures 



www.manaraa.com

108 

CHAPTER 5. EFFECTS OF PH ON KINETICS OF THE STRUCTURAL 

REARRANGEMENT THAT GATES THE ELECTRON-TRANSFER REACTION 

BETWEEN ZINC CYTOCHROME C AND PLASTOCYANIN. ANALYSIS OF 

PROTONATION STATES IN DIPROTEIN COMPLEX 

Milan M. Cmogorac and Nenad M. Kostic 

Abstract 

Electron transfer from zinc cytochrome c to copper(n)plastocyanin in the 

electrostatically-stabilized complex Zncyt/pc(II) is gated by the structural rearrangement of 

diis complex [Cmogorac, M. M., Shen, C., Young, S., Hansson, 0., Kostic, N. M. (1996) 

Biochemistry 35,16465-74]. Now we report the effects of pH on this rearrangement in four 

complexes Zncyt/pc(n), which zinc cytochrome c makes with the wild-type form and the 

single mutants Asp 42 Asn, Glu 59 Gin, and GIu 60 Gin of plastocyanin. The rate constant 

for the rearrangement, h, differs for the four forms of plastocyanin but is independent of pH 

from 5.4 to 9.0 in all four cases. That is affected by the single mutations but not by pH 

changes suggests that the residues Asp 42, Glu 59, and Glu 60 in the wild-type plastocyanin 

remain deprotonated (i.e., as anions) within the Zncyt/pc(n) complex throughout the pH 

range examined. Analysis of the protein rearrangement suggests that loss of salt bridges in 

the initial configuration of the complex is compensated by formation of new salt bridges in 

the rearranged configuration. 
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Introduction 

Metalloproteins act as electron carriers in many biological processes, such as 

photosynthesis and respiration. Despite much recent research,recognition and electron 

transfer between metalloproteins is only partially understood. A pair of metalloproteins can 

form multiple complexes in solution, and configuration that is optimal for recognition need 

not be optimal for electron transfer.^'l^ The proteins may rearrange from the binding 

configuration to the reactive configuration. If this rearrangement is the rate-limiting step, the 

electron-transfer reaction is said to be gated.^ 

The heme protein cytochrome and the blue-copper protein plastocyanin,21-26 

designated cyt and pc, are well suited for kinetic and mechanistic studies since their 

three-dimensional structures in both crystal and solution are known. At pH 7.0 

copper(II)plastocyanin, pc(II), has a charge of -8 while iron(n)cytochrome c has a charge of 

+6. The negative charge in plastocyanins from high plants is found mostly in the acidic 

patch, which consists of the lower cluster— residues Asp 42, Glu 43, and Glu 44 — and the 

upper cluster— residues Glu 59, Glu 60, and Asp 61. This patch has been implicated in 

reactions of pc with small inorganic complexes and with other proteins.^l'27-32 Some of the 

acidic residues seem to have unusually high pK# values.^^ 

The replacement of iron(II) with zinc(II) does not perturb the conformation of cyt and 

its association with other proteins.34-37 zinc(II) derivative, designated Zncyt, is excited 

by the laser pulse to its triplet state, ^Zncyt, a strong electron-donor (E°= -0.88 V vs. NHE) 

that reduces pc(n). The reaction in eq 1 is gated by a structural rearrangement of the 
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electrostatically-stabilized complex ""Zncyt/pcCII). The first-order rate constant corresponds 

to this rearrangement, not electron transfer.^^'^^ 

"'Ziicyt/pc(ll)—Zncyt'^/pc(l) (i) 

The effects and non-effects of ionic strength, viscosity, thermodynamic driving force, 

temperature, and site-directed mutation revealed much, but not all, about the mechanism of 

this rearrangement.27,38-42 jjere we study the effects of neutralizing certain residues in the 

acidic patch. Besides the wild-type form, we chose the following three mutants of spinach pc: 

Asp 42 Asn, Glu 59 Gin, and Glu 60 Gin. The kinetics results reveal the protonation state of 

these residues in the dynamic diprotein complex. This information may not be obtainable by 

other experimental methods. 

Materials and Methods 

Chemicals. Distilled water was demineralized to resistivity greater 16 MH cm. 

Chromatography gels were purchased from Sigma Chemical Company. 

Triethanolammonium chloride was purchased from Aldrich Chemical Company. Hydrogen 

fluoride, nitrogen, and ultrapure argon were purchased from Air Products Co. All other 

chemicals were purchased from Fisher Chemical Company. 

Buffers. The buffers kept the ionic strength of 2.50 mM over the entire pH range, 

from 5.4 to 9.0.^3 jhe full range was covered with a buffer made by dissolving 2.50 mmol 

(0.4641 g) of triethanolammonium chloride and 2.50 mmol (142.8 ^L) of glacial acetic acid 

in 1.000 L of demineralized water. We refer to this solution as the complete buffer. The pH 

interval from 5.4 to 7.2 was covered also with a 2.50 mM solution of sodium cacodylate, 

termed the acidic buffer. The pH interval frx)m 6.6 to 9.0 was covered also with a 2.50 mM 
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solution of triethanolammonium chloride, termed the basic buffer. The basic component of 

the first two buffers and the acidic component of the third were created by adding 0.100 M 

solutions of NaOH or HCl, respectively. These two solutions were used also to adjust the pH, 

which was measured with a Fisher Accumet 805 MP pH meter equipped with an Aldrich 

combination microelectrode. Conductivity was measured with the instrument HI 8733, by 

HANNA Instruments, Inc. The values in the overlapping region, from 6.6 to 7.2, were the 

same regardless of the buffer chosen. 

Proteins. Cytochrome c from horse heart was purchased from Sigma Chemical Co. 

The iron-free (so-called free-base) form was made, purified, and reconstituted with zinc(II) 

by a modification'^ of the original procedure.^^'^^ The product, zinc cytochrome c, was 

handled at 4 °C, in the dark. The criteria of purity were the absorbance ratios A423/A549 > 

15.4 and A549/A585 < 2.0. The absorptivity is £423=2.43-10^ M"'cm''.^5 Wild-type 

plastocyanin from spinach and three single mutants were prepared by overexpression in E. 

coli,^^ with the vector pUGlOltr^^ and purified first with a DE32 colunm and then with a 

26/10 Q Sepharose high-performance FPLC column firom Pharmacia. The blue fraction was 

concentrated by dialysis against dry polyethyleneglycol (PEG 2000) and passed through a 

gel-filtration column Sephacryl S-100 HR. The amount of holo-plastocyanin was determined 

spectrophotometrically, in the presence of K3[Fe(CN)6], on the basis of the absorptivity 

£597=4700 M"' cm"'.^^ The UV-vis spectra were recorded with a Perkin-Elmer Lambda 18 

spectrophotometer. 

Flash Kinetic Spectrophotometry. The so-called laser flash photolysis on a 

microsecond time scale was done with a standard apparatus.^^ Argon for deaeration was first 
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passed through water and then through the buffered solution of the proteins for 30 minutes. 

The cell jacket was connected to the 30-L circulating bath Forma 2067, which maintained the 

temperature at 293.0(2) K. Concentration of Zncyt was kept at 10.0 ^M, while concentration 

of pc(II) was varied from 2.0 to 30.0 jjM. Initial volume of the solution was 1.000 mL. Upon 

each addition of a small portion, 1.00 to 4.00 |iL, of a 0.100 M solution of NaOH or HCl, the 

pH was measured with the freshly-calibrated pH meter, and the solution was additionally 

deaerated for 10 more minutes. Formation and decay of the triplet sate, "Zncyt, was 

monitored by change in absorbance at 460 nm, AA4(5o. At each concentration of pc(n) and 

each pH value, four or more laser pulses were delivered and kinetic traces recorded. 

Calibration of the pH meter was checked after the last adjustment of pH. 

Regression Analysis of the Rate Constant kr and Modeling of the 

Rearrangement. The kinetic traces were fitted to eq 2 by a least-squares nonlinear 

regression method, with the program SigmaPlot v4.01, 

= a, exp(-M)+a, exp(-^,bst) (2) 

from SPSS Inc. The pseudo-first order rate constant ^obs depends on the concentration of 

pc(II) and corresponds to bimolecular quenching of "Zncyt by pc(II). We focus on the 

first-order rate constant, which corresponds to unimolecular quenching in the complex 

"Zncyt/pc(II), and on its amplitude ai. The error margins for all reported values correspond to 

two standard deviations and the confidence limit greater than 95%. 

The rearrangement involves the migration of Zncyt on the pc surface fnsm the 

binding configuration, in which the basic patch in Zncyt abuts the acidic patch in pc, to the 

reactive configuration, in which Zncyt sits near the upper edge of the acidic patch or between 



www.manaraa.com

113 

the acidic and hydrophobic patch in pc; see Figure 1.38,39,41,42 xhe respective models for 

the two configurations are so-called max-ov and n/eq complexes found in a thorough 

computational search.^^ The rearrangement of the Zncyt/pc complex was modeled and 

viewed with the program RasMol v2.4. 

Results 

Redox Quenching of ^Zncyt by Wild-type pc(II) and its Mutants. The rate 

constant for the natural decay of the triplet ""Zncyt remains 110 s"' over the entire pH range, 

from 5.4 to 9.0.3^'^®'^^ In the presence of the quencher, any of the four forms of pc(II), the 

triplet decay is biphasic throughout the pH range. Because we are interested in the properties 

of the Zncyt/pc(II) complex, we study the unimolecular phase, that corresponding to the first 

term in eq 2. As the pc(II) concentration increases, the amplitude ai increases, but the rate 

constant remains the same. At a constant pc(II) concentration, ai depends on pH (see 

Figure 2), but Updoes not (see Figure 3). As Figure 2 and Figure SI in the Supporting 

Information show, the maximum in a\ occurs approximately at pH 6.8,6.2,6.4, and 6.3 for 

the wild-type. Asp 42 Asn, Glu 59 Gin, and Glu 60 Gin forms of pc(n), respectively. For 

sufficiently accurate determination of kf, the concentration of Zncyt/pc(n) complex should 

be greater than ca. 1.0 ^M. Becatue the mutants Glu 59 Gin and Glu 60 Gin have diminished 

affinity for Zncyt, even 30.0 |iM concentration of them could not produce a sufficient 

concentration of Zncyt/pc(II) at low and high ends of the pH range. For this reason, the plots 

in Figures 3c and 3d are a little shorter than the others. All four plots in Figure 3 span the pH 

ranges over which could be determined well. The main result, shown in Table 1 and 

Figure 3, is that the rearrangement of the complex Zncyt/pc(II) is affected by mutation in pc 

but not by pH changes. 
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Discussion 

Properties of the Buffers. The pH interval from 5.4 to 9.0 is as wide as was safely 

possible. Staying in it, we avoided protonation of His 87 in pc^^ and nonspecific damage to 

the proteins. Because association of Zncyt and pc depends on ionic strength, we took pains to 

keep it constant while varying pH.^^ jf the acidic and the basic component of a buffer bear 

different charges, when pH changes so will change the concentrations of these two ions and 

the ionic strength. We avoided this problem by making each buffer from an ion (cacodylate 

anion or triethanolammonium cation) and its uncharged conjugate partner (cacodylic acid or 

triethanolamine). When HCl is added to the former buffer, the anion is replaced by the CI' 

anion; when NaOH is added to the latter buffer, the cation is replaced by the Na^ cation. In 

each case ionic strength is kept constant. 

To have sufficient buffering capacity of the same buffer over the entire pH range, we 

used a mixture of two acid-base pairs. To keep the ionic strength constant, we chose the two 

acidic members of these pairs with widely different pKa values: acetic acid (4.64) and 

triethanolammonium ion (7.78). To compensate for the variation of buffer capacity with pH, 

we varied the portions of added NaOH solution firom l.(X) (at the acidic end) to 

2.(X) - 4.00 (around the neutral point), down to 2.00 and 1.00 (at the basic end) of this 

complete buffer. The total volume of added NaOH was 30.0 ^L, or less than 3 % of the 

sample. Titrations shown in Figure S2 in the Supporting formation gave identical pH 

values and conductivity with the complete buffer alone and with a 10.0 solution of 

cytochrome c in the complete buffer. Evidently, the protein does not alter the buffer 

properties. As Figure S3 in the Supporting Mormation shows, the calculated ionic strength 

remains 2.50 mM throughout the pH range. Because ai and kf are independent of the buffer 
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(at a given pH value) we rule out specific interactions between the proteins and the buffer. 

Clearly, the changes in Figures 2 and 3 and in Figure SI in the Supporting Information are 

due solely to changes in pH. 

Independence of the Protein Rearrangement of pH. There are relatively few 

studies of the effects of pH on redox reactions and accompanying processes involving 

metalloproteins.53-35 xhg rate constant for a true electron-transfer reaction within ascorbate 

oxidase is independent of pH.^^ We do not, however, know any previous study of a gated 

electron-transfer reaction at various pH values. This study of protein rearrangement in an 

electrostatically-stabilized complex may be the first of its kind. 

The surprising finding in Figure 3, that the rate of rearrangement is independent of 

pH over a fairly wide range, may have three explanations, depending on the (de)protonation 

state of those side chains that are affected by protein association. First, this state changes but 

is irrelevant for the rate of rearrangement. Second, this state changes but multiple changes 

cancel one another so that the plot in Figure 3a remains horizontal. Third, this state does not 

change. 

To distinguish among these three explanations, we compared the behavior of three 

complexes, those that Zncyt makes with the wild-type pc and with the mutants Asp 42 Asn 

and Glu 59 Gin; see Figures 3a, 3b, and 3c. Carboxylic acid and carboxamide differ in 

electrostatic but not steric properties. Any effect of the mutations, if observed, would be due 

to electrostatic differences between the acid and its amide. 

As Table I shows, the kp value for the Zncyt/pc(II) complex containing Asp 42 Asn is 

higher, and that for the complex containing Glu 59 Gin lower, than the kp value for the 

complex containing wild-type pc. Evidently, neutralization of charge by amidation of Asp 42 
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and of Glu 59 in pc mutants does affect the rearrangement of the diprotein complex. 

Similarly, neutralization of charge by protonation of Asp 42 and Glu 59 in the wild-type pc is 

expected to raise and lower, respectively, the kf value for Zncyt/pc(n). The first explanation 

is refuted. 

Simultaneous deprotonation of Asp 42 and Glu 59 in the wild-type pc would both 

assist and hinder the rearrangement and, conceivably, produce little or no net change of 

with pH. In this case, the single mutation Asp 42 Asn would abolish the former, and 

Glu 59 Gin the latter, effect and make the A:f sensitive to the deprotonation of the other acidic 

residue. Horizontal plots in Figures 3b and 3c, however, rule out this scenario. The second 

explanation above is refuted, too. Evidence favors the third possible explanation. 

To test the conclusion that the acidic residues in pc within the complex remain 

deprotonated throughout the pH range, we examined also the complex Zncyt/pc(II) 

containing the mutant Glu 60 Gin; see Figure 3d. As Table 1 shows,.the protein 

rearrangement is markedly impeded by this amidation. Neutralization by protonation 

likewise would impede the rearrangement. Absence of this e^ect, the horizontal plot in 

Figure 3a, shows that protonation does not occur in the pH interval covered. Evidently, 

Glu 60 remains deprotonated. Our study of the reaction in eq 1 at various pH values gave 

detailed information about the interface of the associated proteins that could not be obtained 

in other ways. 

A Closer Look at Rearrangement There is much evidence for the general 

orientation of cytochrome c and high-plant plastocyanin in the electrostatically-stabilized 

binary complex; the basic patch around the exposed-heme edge in the former abuts the broad 

acidic patch in the latter.^^*^^ A systematic computational search for the best match of these 
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proteins' electrostatic fields gave further information about the association.^^ Recent studies 

in our laboratory confirmed these previous findings about the configuration of the initial or 

binding complex and added new information about the reactive complex.39,42 During the 

rearrangement, the basic patch in cytochrome c moves from the acidic patch to an area near 

the upper edge of the acidic patch and between the acidic and hydrophobic patches, in the 

vicinity of Gin 88, in plastocyanin. 

Our new finding, that some key residues in both acidic clusters in plastocyanin 

remain deprotonated during the rearrangement, prompted us to take a closer look at the 

protein interface in the two configurations. If the binding and reactive configurations of the 

Zncyt/pc(n) complex approximately correspond to the so-called max-ov and n/eq 

configurations found in the aforementioned computational study,^9 this preference for die 

anionic form can be attributed to salt bridges. Each configuration has four of them. The 

bridge between Lys 86 and Asp 44 survives the rearrangement. The residue Lys 13 switches 

from Glu 43 to Glu 59. While Lys 25 breaks, Lys 8 makes a salt bridge with Glu 60. While 

Lys 27 breaks a salt bridge with Glu 59, Lys 87 makes a similar one with Glu 43. All in all, 

three salt bridges seem to be lost and three gained in the rearrangement. This compensation 

may be a reason for the relatively low activation enthalpy for the rearrangement41.63 foj-

the independence of its rate constant (kp) on pH. 

Conclusion 

If relevant mutants are available, studying possible effects of pH on a dynamic 

protein complex allow inferences about the (de)protonation states of particular side chains. 

Although NMR spectroscopy may in some cases reveal these states, this information would 
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not necessarily pertain to the dynamic process. Analyzing these (de)protonation states on the 

basis of kinetic results ensures that the conclusion will be relevant to the reactivity of the 

protein complex. 
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Table 1. The Maximum Relative Amplitude of the Unimolecular Phase (Structural 

Rearrangement) in the Reaction in eq 1 and the Rate Constant when the 

Concentrations of Zncyt and pc(II) are 10.0 nM each. Temperature is 293.0 K, 

Ionic Strength is 2.50 mM. The Error Margins Correspond to Two Standard 

Deviations and the Confidence Limit Greater than 95% 

5 I piastocyanin form max of '— 10 / s' 

wild-type 0.68(3) 2.0(1) 

Asp 42 Asn 0.23(4) 2.3(1) 

GIu 59 Gin 0.21(3) 1.6(1) 

Glu 60 Gin 0.23(4) 1.1(1) 
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Figure Captions 

Figure 1. Rearrangement of the diprotein complex Zncyt/pc(II) from the binding to 

the reactive configuration, corresponding to the so-called max-ov and n/eq structures found 

in a computational study.^^ jhe two metals are highlighted, while the porphyrin ring and the 

ligands to copper are shown as wire-frame models. Plastocyanin (on the left) is stationary, 

while cytochrome c (on the right) moves. In the binding configuration Lys 13, Lys 86, 

Lys 25, and Lys 27 residues in cytochrome c form salt bridges respectively with Glu 43, 

Asp 44, Glu 59, and Glu 60 residues in plastocyanin. In the reactive configuration Lys 87, 

Lys 86, Lys 13, and Lys 8 residues in cytochrome c form salt bridges respectively with 

Glu 43, Asp 44, Glu 59, and Glu 60 residues in plastocyanin. All these residues are 

highlighted as ball-and-stick models. Protein structures were drawn with the program 

MolScript \2.\^ 

Figure 2. Dependence on pH at the constant ionic strength of 2.50 mM of the relative 

amplitude of the unimolecular phase (structural rearrangement) in the reaction in eq 1. 

Concentrations of Zncyt and pc(II) were 10.0 nM each. 

Figure 3. Independence of pH of the rate constant for the structural rearrangement 

of the diprotein complex ^Zncyt/pc(II) containing four forms of copper(II)plastocyanin: (a) 

wild-type, (b) Asp 42 Asn, (c) Glu 59 Gin, and (d) Glu 60 Gin. Each line is the fit to the 

slope of zero and had > 0.97. 



www.manaraa.com

125 

binding configuration 

reactive configuration 

Figure 1 



www.manaraa.com

126 

pH 

Figure 2 



www.manaraa.com

127 

JT 1 ' 1 T 

J—i j j ^ ^ 

a 

H \ 1 1 h 

b 

H 1 1 ^ h 

c 

i i i i i  I  i $ 1  $  g  8  

d 
J I I I u 
5 6 7 8 9 

PH 

Figures 



www.manaraa.com

128 

CHAPTER 6. CONCLUSIONS 

We investigated the effects of site-directed mutations and viscosity on rate-limiting 

rearrangement within the complex of cytochrome c and plastocyanin and identified the 

reactive configuration of the complex. In the reactive configuration of the complex 

cytochrome c heme edge is between plastocyanin acidic and hydrophobic patch. 

Reactive intermediate in the reaction of cytochrome c and plastocyanin, the zinc 

cytochrome c cation radical, exhibits different reactivity from iron form of the protein. The 

reorganization energy and electron self-exchange rate constant of the cation radical show that 

methionine, ligand in iron form of the protein, is uncoordinated in the zinc form of the 

protein. 

We extended the proton-linkage model so it can give information about individual 

proteins and even about amino-acid residues involved in protein association. We extract from 

the experimental results the composite pK, values, both in separate and in combined proteins, 

of groups of residues that change their protonation state upon protein association. The 

extended model was applied to intricate effects of pH on association of cytochrome c with 

wild-type and several mutant forms of plastocyanin. We extract from the experimental results 

the composite pKa values, both in separate and in combined proteins, of groups of residues 

that change their protonation state upon protein association. Interpretation of these 

parameters revealed general and speciflc features of the protein-protein interaction. 

The effects of pH on protein rearrangement were studied. The rearrangement is 

independent of pH and amino acid side chains in the acidic patch of plastocyanin aie 

deprotonated in the complex of cytochrome c and plastocyanin. Study of effects of pH on a 
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dynamic protein complex allow inferences about the protonation states of particular side 

chains. 

I 
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